matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionKleiner Gauß
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Kleiner Gauß
Kleiner Gauß < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleiner Gauß: Vollständige Induktion
Status: (Frage) beantwortet Status 
Datum: 20:50 Di 06.10.2009
Autor: Semimathematiker

Hi zusammen

Nach vollständiger Induktion bekommt man:

[mm] \bruch{n(n+1)}{2} [/mm] + (n+1) = [mm] \bruch{(n+1)(n+2}{2} [/mm]

Es ist schon fast peinlich aber kann mir das jemand mal Schritt für Schritt umstellen damit rechts und links das selbe steht, ich also für rechte Seite minus linke Seite 0 = 0 herausbekomme. Für mich ist dieser Beweis erst damit abgeschlossen. Anders kann ich es nicht akzeptieren. Irgendwie bin ich noch nicht so weit dass ich sagen kann, dass die rechte Funktion das selbe beschreibt wie die linke. Sonst hätte ich den ganzen Beweis nicht gebraucht.
Vielen Dank
Semimathematiker

        
Bezug
Kleiner Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Di 06.10.2009
Autor: abakus


> Hi zusammen
>  
> Nach vollständiger Induktion bekommt man:
>  
> [mm]\bruch{n(n+1)}{2}[/mm] + (n+1) = [mm]\bruch{(n+1)(n+2}{2}[/mm]
>  
> Es ist schon fast peinlich aber kann mir das jemand mal
> Schritt für Schritt umstellen damit rechts und links das
> selbe steht, ich also für rechte Seite minus linke Seite 0
> = 0 herausbekomme. Für mich ist dieser Beweis erst damit
> abgeschlossen. Anders kann ich es nicht akzeptieren.

Hallo,
wenn du die beiden Ausdrücke auf der linken Seite addieren willst, musst du sie nunächst gleichnamig machen.
Gruß Abakus

> Irgendwie bin ich noch nicht so weit dass ich sagen kann,
> dass die rechte Funktion das selbe beschreibt wie die
> linke. Sonst hätte ich den ganzen Beweis nicht gebraucht.
>  Vielen Dank
>  Semimathematiker


Bezug
        
Bezug
Kleiner Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Mi 07.10.2009
Autor: fred97

$ [mm] \bruch{n(n+1)}{2} [/mm]  + (n+1) = [mm] (n+1)(\bruch{n}{2}+1)= (n+1)(\bruch{n}{2}+\bruch{2}{2})=(n+1)\bruch{(n+2)}{2}$ [/mm]

FRED

Bezug
                
Bezug
Kleiner Gauß: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Do 08.10.2009
Autor: Semimathematiker

Sorry. Ich weiß echt nicht was ich da zusammengerechnet hab. Kleiner Aussetzer.... Danke Abakus und Fred. Ich musste natürlich nur mit 2 multiplizieren und auch mit 2 dividieren. Der Rest ergibt sich von selbst *kopfschüttel* :D

[mm] \bruch{n(n+1)}{2}+ \bruch{2(n+1)}{2} [/mm] = ......

Trotzdem: Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]