matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionKleine Frage zur Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Kleine Frage zur Induktion
Kleine Frage zur Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleine Frage zur Induktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:21 Do 04.11.2010
Autor: Ersti10

Aufgabe
Beweisen Sie, dass [mm] x_{n}\le 2^{n} [/mm] gilt für alle n [mm] \in \IN [/mm]

(Weiterführung zur Fibonacci-Folge)
Gegeben ist [mm] x_{n} [/mm] = [mm] x_{n-1} [/mm] + [mm] x_{n-2} [/mm]

Habe den Induktionsanfang geschafft, beim Induktionsschritt die Annahme und die Behauptung auch aufgestellt.

Nun habe ich eine Frage zum Beweis!

Ich muss ja (n+1) einsetzen um es zu beweisen.
Meine Rechnung:
[mm] x_{n} \Rightarrow x_{n-1} [/mm] + [mm] x_{n-2} [/mm]

Nun setze ich (n+1) ein und erhalte
[mm] x_{n} [/mm] + [mm] x_{n-1} [/mm]

Darf ich das dann wie folgt umformen um zur Lösung zu kommen?
[mm] x_{n} [/mm] + [mm] x_{n-1} [/mm] = [mm] x_{n} [/mm] + [mm] x_{n} [/mm] * [mm] x_{-1} [/mm]



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kleine Frage zur Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Do 04.11.2010
Autor: schachuzipus

Hallo,

> Beweisen Sie, dass [mm]x_{n}\le 2^{n}[/mm] gilt für alle n [mm]\in \IN[/mm]
>
> (Weiterführung zur Fibonacci-Folge)
> Gegeben ist [mm]x_{n}[/mm] = [mm]x_{n-1}[/mm] + [mm]x_{n-2}[/mm]
> Habe den Induktionsanfang geschafft, beim
> Induktionsschritt die Annahme und die Behauptung auch
> aufgestellt.
>
> Nun habe ich eine Frage zum Beweis!
>
> Ich muss ja (n+1) einsetzen um es zu beweisen.
> Meine Rechnung:
> [mm]x_{n} \Rightarrow x_{n-1}[/mm] + [mm]x_{n-2}[/mm]

[haee]

Was bedeutet [mm]\Rightarrow[/mm] hier?

> Nun setze ich (n+1) ein und erhalte
> [mm]x_{n}[/mm] + [mm]x_{n-1}[/mm]
>
> Darf ich das dann wie folgt umformen um zur Lösung zu
> kommen?
> [mm]x_{n}[/mm] + [mm]x_{n-1}[/mm] = [mm]x_{n}[/mm] + [mm]x_{n}[/mm] * [mm]x_{-1}[/mm]

Benutze die erweiterte Induktionsvoraussetzung:

Sei [mm]n\in\IN[/mm] bel., aber fest und gelte für alle [mm]k\le n[/mm]: [mm]x_k\le 2^k[/mm]

Also insbesondere [mm]x_n\le 2^n[/mm] und [mm]x_{n-1}\le 2^{n-1}[/mm]

Damit [mm]x_{n+1}=x_n+x_{n-1}\le 2^n+2^{n-1}\le 2^n+2^n\ldots[/mm]

>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
        
Bezug
Kleine Frage zur Induktion: Anmerkung
Status: (Antwort) fertig Status 
Datum: 10:31 Do 04.11.2010
Autor: Roadrunner

Hallo Ersti!


> Darf ich das dann wie folgt umformen um zur Lösung zu kommen?
> [mm]x_{n}[/mm] + [mm]x_{n-1}[/mm] = [mm]x_{n}[/mm] + [mm]x_{n}[/mm] * [mm]x_{-1}[/mm]

[eek] Nein, das darfst Du nicht. Bedenke, dass $n-1_$ hier ein Index ist und keine Hochzahl.

Daher darfst Du das nicht mit irgendwelchen MBPotenzgesetzen verwechslen und verarbeiten.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]