Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft
Für
Schüler
,
Studenten
, Lehrer, Mathematik-Interessierte.
Hallo Gast!
[
einloggen
|
registrieren
]
Startseite
·
Forum
·
Wissen
·
Kurse
·
Mitglieder
·
Team
·
Impressum
Forenbaum
Forenbaum
Hochschulmathe
Uni-Analysis
Reelle Analysis
UKomplx
Uni-Kompl. Analysis
Differentialgl.
Maß/Integrat-Theorie
Funktionalanalysis
Transformationen
UAnaSon
Uni-Lin. Algebra
Abbildungen
ULinAGS
Matrizen
Determinanten
Eigenwerte
Skalarprodukte
Moduln/Vektorraum
Sonstiges
Algebra+Zahlentheo.
Algebra
Zahlentheorie
Diskrete Mathematik
Diskrete Optimierung
Graphentheorie
Operations Research
Relationen
Fachdidaktik
Finanz+Versicherung
Uni-Finanzmathematik
Uni-Versicherungsmat
Logik+Mengenlehre
Logik
Mengenlehre
Numerik
Lin. Gleich.-systeme
Nichtlineare Gleich.
Interpol.+Approx.
Integr.+Differenz.
Eigenwertprobleme
DGL
Uni-Stochastik
Kombinatorik
math. Statistik
Statistik (Anwend.)
stoch. Analysis
stoch. Prozesse
Wahrscheinlichkeitstheorie
Topologie+Geometrie
Uni-Sonstiges
Gezeigt werden alle Foren bis zur Tiefe
2
Navigation
Startseite
...
Neuerdings
beta
neu
Forum
...
vor
wissen
...
vor
kurse
...
Werkzeuge
...
Nachhilfevermittlung
beta
...
Online-Spiele
beta
Suchen
Verein
...
Impressum
Das Projekt
Server
und Internetanbindung werden durch
Spenden
finanziert.
Organisiert wird das Projekt von unserem
Koordinatorenteam
.
Hunderte Mitglieder
helfen ehrenamtlich in unseren
moderierten
Foren
.
Anbieter der Seite ist der gemeinnützige Verein "
Vorhilfe.de e.V.
".
Partnerseiten
Weitere Fächer:
Vorhilfe.de
FunkyPlot
: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Startseite
>
MatheForen
>
Exp- und Log-Funktionen
>
Kleine Frage
Foren für weitere Schulfächer findest Du auf
www.vorhilfe.de
z.B.
Philosophie
•
Religion
•
Kunst
•
Musik
•
Sport
•
Pädagogik
Forum "Exp- und Log-Funktionen" - Kleine Frage
Kleine Frage
<
Exp- und Log-Fktn
<
Analysis
<
Oberstufe
<
Schule
<
Mathe
<
Vorhilfe
Ansicht:
[ geschachtelt ]
|
Forum "Exp- und Log-Funktionen"
|
Alle Foren
|
Forenbaum
|
Materialien
Kleine Frage: Frage (beantwortet)
Status
:
(Frage) beantwortet
Datum
:
16:51
Mo
22.12.2008
Autor
:
Dinker
Ich hab folgendes Resultat erhalten:
[mm] e^{5x} [/mm] (5 ln [mm] x^{2} [/mm] + [mm] \bruch{2}{x}) [/mm]
= [mm] e^{5x}(10 [/mm] lnx + [mm] \bruch{2}{x}) [/mm]
Oder das darf man so umschreiben?
Gruss DInker
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bezug
Kleine Frage: Umformung okay
Status
:
(Antwort) fertig
Datum
:
16:54
Mo
22.12.2008
Autor
:
Loddar
Hallo Dinker!
Das Ergebnis an sich kann ich nun nicht kontrollieren (da ich die Aufgabe nicht kenne). Aber die Umformung ist korrekt, da hier folgendes
Logarithmusgesetz
verwendet wurde:
[mm] $$\log_b\left( \ a^m \ \right) [/mm] \ = \ [mm] m*\log_b(a)$$ [/mm]
Gruß
Loddar
Bezug
Ansicht:
[ geschachtelt ]
|
Forum "Exp- und Log-Funktionen"
|
Alle Foren
|
Forenbaum
|
Materialien
www.unimatheforum.de
[
Startseite
|
Forum
|
Wissen
|
Kurse
|
Mitglieder
|
Team
|
Impressum
]