matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieKlausurfrage
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Klausurfrage
Klausurfrage < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klausurfrage: Stimmt die Lösung?
Status: (Frage) beantwortet Status 
Datum: 22:12 Do 19.09.2013
Autor: starki

Aufgabe
Die in einem Werk hergestellten Erzeugnisse werden drei verschiedenen Prüfungen unterzogen. Die erste Prüfung übersteht das Erzeugnis mit der Wahrscheinlichkeit 0,9, die zweite mit der Wahrscheinlichkeit 0,7, die dritte mit der Wahrscheinlichkeit 0,8. Unter entsprechender Unabhängigkeitsannahmen bestimme man die Wahrscheinlichkeit folgender Erzeugnisse:

a) A - das Erzeugnis übersteht alle Prüfungen
b) B - das Erzeugnis übersteht genau zwei Prüfungen.
c) C - das Erzeugnis übersteht mindestens zwei Prüfungen.

Also ich habe mir folgendes gedacht:

[mm] P(P_1) [/mm] = 0,9
[mm] P(P_2) [/mm] = 0,7
[mm] P(P_3) [/mm] = 0,8

P(A) = [mm] P(P_1) [/mm] * [mm] P(P_2) [/mm] * [mm] P(P_3) [/mm]

P(B) = [mm] P(P_1 \cap P_2) [/mm] + [mm] P(P_2 \cap P_3) [/mm] + [mm] P(P_1 \cap P_3) [/mm] - [mm] P(P_1 \cap P_2 \cap P_3) [/mm]

Bei der B hab ich mir gedacht, es sollen ja nur zwei Ereignisse passieren, als nicht nur die, wo nur eins passiert (deswegen habe ich die einzelnen Ereignisse nicht in die Summe aufgenommen) und die Ereignisse, wo alle drei passieren, sollen auch nicht rein, deswegen subtrahier ich die wieder.

Stimmt mein Gedanke so ?

P(C) = P(B) + [mm] P(P_1 \cap P_2 \cap P_3) [/mm] (Hier dürfen ja auch Ereignisse passieren, bei der die Erzeugnisse alle drei Prüfungen bestehen).

        
Bezug
Klausurfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Do 19.09.2013
Autor: Diophant

Hallo,

a) ist richtig, b) jedoch falsch. Wie kommst du hier auf die Idee, [mm] P(A\cap{B}\cap{C}) [/mm] zu subtrahieren?

c) wäre richtig, wenn P(B) stimmen würde.


Gruß, Diophant

Bezug
                
Bezug
Klausurfrage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Do 19.09.2013
Autor: starki


> Hallo,
>  
> a) ist richtig, b) jedoch falsch. Wie kommst du hier auf
> die Idee, [mm]P(A\cap{B}\cap{C})[/mm] zu subtrahieren?

Das weiß ich selbst nicht so genau. Hatte noch die Inklusion-Exklusions-Formel im Hinterkopf...


>  
> c) wäre richtig, wenn P(B) stimmen würde.
>  
>
> Gruß, Diophant  

Auf jeden Fall Danke fürs überprüfen :)

Bezug
                        
Bezug
Klausurfrage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Do 19.09.2013
Autor: abakus


> > Hallo,
> >
> > a) ist richtig, b) jedoch falsch. Wie kommst du hier auf
> > die Idee, [mm]P(A\cap{B}\cap{C})[/mm] zu subtrahieren?

Wenn, dann müsste [mm]P(A\cap{B}\cap{C})[/mm] dreimal subtrahiert werden.
Einfacher ist aber [mm]P(A\cap{B}\cap{\overline{C})+P(A\cap{C}\cap{\overline{B})+P(B\cap{C}\cap{\overline{A})[/mm].
Gruß Abakus

>

> Das weiß ich selbst nicht so genau. Hatte noch die
> Inklusion-Exklusions-Formel im Hinterkopf...

>
>

> >
> > c) wäre richtig, wenn P(B) stimmen würde.
> >
> >
> > Gruß, Diophant

>

> Auf jeden Fall Danke fürs überprüfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]