matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKlassifizierung, Singularität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Klassifizierung, Singularität
Klassifizierung, Singularität < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassifizierung, Singularität: Grenzwertbetrachtung
Status: (Frage) beantwortet Status 
Datum: 15:05 Mi 11.03.2009
Autor: Marcel08

Hallo Matheraum,



es ist die Singularität der Funktion [mm] f(z):=sin(\bruch{1}{z}) [/mm] zu bestimmen und zu klassifizieren.




Mein Problem:



Wie folgert man aus der Reihe


[mm] \summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}, [/mm]



dass es sich hier um eine wesentliche Singularität handelt?




Mein Lösungsvorschlag:



Ich erhalte


[mm] \limes_{z\rightarrow 0}\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}=\infty, [/mm]



da der Quotient [mm] \bruch{1}{z} [/mm] für [mm] z\to [/mm] 0 unendlich groß wird. Es existiert also kein Grenzwert.




Meine Fragen:


1.) Stimmt meine Argumentation und ist sie ausreichend?

2.) Jene Grenzwertbetrachtung zur Klassifizierung von Singularitäten hat
    aber nichts mit der Grenzwertbestimmung der Reihe, also der  
    Summenbestimmung der zu betrachtenden Reihe zu tun, oder?





Gruß, Marcel

        
Bezug
Klassifizierung, Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Mi 11.03.2009
Autor: fred97


> Hallo Matheraum,
>  
>
>
> es ist die Singularität der Funktion
> [mm]f(z):=sin(\bruch{1}{z})[/mm] zu bestimmen und zu
> klassifizieren.
>  
>
>
>
> Mein Problem:
>  
>
>
> Wie folgert man aus der Reihe
>  
>
> [mm]\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1},[/mm]
>  
>
>
> dass es sich hier um eine wesentliche Singularität
> handelt?
>  
>
>
>
> Mein Lösungsvorschlag:
>  
>
>
> Ich erhalte
>  
>
> [mm]\limes_{z\rightarrow 0}\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}=\infty,[/mm]
>  
>



Das ist nicht richtig ! Schau Dir mal den Satz von Casorati-Weierstraß an !






>
> da der Quotient [mm]\bruch{1}{z}[/mm] für [mm]z\to[/mm] 0 unendlich groß
> wird. Es existiert also kein Grenzwert.
>
>
>
>
> Meine Fragen:
>  
>
> 1.) Stimmt meine Argumentation und ist sie ausreichend?
>  
> 2.) Jene Grenzwertbetrachtung zur Klassifizierung von
> Singularitäten hat
> aber nichts mit der Grenzwertbestimmung der Reihe, also der
>  
> Summenbestimmung der zu betrachtenden Reihe zu tun, oder?
>  
>
>
>
>
> Gruß, Marcel




Allgemein: nimm an, f hat eine isolierte Singularität in [mm] z_0 [/mm] = 0. Dann hat f die Laurententwicklung


      f(z) = [mm] \summe_{n=0}^{\infty}b_nz^n [/mm] + [mm] \summe_{n=}^{\infty}\bruch{a_n}{z^n} [/mm]


die 2. Reihe heißt Hauptteil, die 1. Reihe Nebenteil.

Es gilt: f hat in 0 eine wesentliche Singularität [mm] \gdw a_n \not= [/mm] 0 für unendlich viele n.

Nun zu [mm]f(z):=sin(\bruch{1}{z})[/mm] = [mm]\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}[/mm]=  1 +[mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1},[/mm]


Hier ist derNebentteil die konstante Funktion 1 und der Hauptteil = [mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}[/mm]


Wieviele Koeff. im Haupteil sind [mm] \not= [/mm] 0 ?


FRED


P.S. das Residuum = [mm] a_1 [/mm] (erinnerst Du Dich an unsere gestrige Diskussion ? )

Bezug
                
Bezug
Klassifizierung, Singularität: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:40 Mi 11.03.2009
Autor: Marcel08


> > Hallo Matheraum,
>  >  
> >
> >
> > es ist die Singularität der Funktion
> > [mm]f(z):=sin(\bruch{1}{z})[/mm] zu bestimmen und zu
> > klassifizieren.
>  >  
> >
> >
> >
> > Mein Problem:
>  >  
> >
> >
> > Wie folgert man aus der Reihe
>  >  
> >
> >
> [mm]\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1},[/mm]
>  >  
> >
> >
> > dass es sich hier um eine wesentliche Singularität
> > handelt?
>  >  
> >
> >
> >
> > Mein Lösungsvorschlag:
>  >  
> >
> >
> > Ich erhalte
>  >  
> >
> > [mm]\limes_{z\rightarrow 0}\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}=\infty,[/mm]
>  
> >  

> >
>
>
>
> Das ist nicht richtig ! Schau Dir mal den Satz von
> Casorati-Weierstraß an !


Gemäß dem Satz muss gelten:

Zu jedem [mm] \omega \in \IC [/mm] muss

1.) eine Folge [mm] (z_{n}) [/mm] mit lim [mm] z_{n}=z_{0} [/mm] und

2.) eine Folge [mm] f(z_{n})=\omega [/mm] exisitieren.


Jetzt habe ich Probleme damit, die Fälle speziell auf diese Aufgabe zu übertragen. Der obige Grenzwert muss nun meine Singularität 0 oder eine komplexe Zahl sein? Vielleicht kannst du mir nochmal einen Schubser geben?

>
>
>
> >
> > da der Quotient [mm]\bruch{1}{z}[/mm] für [mm]z\to[/mm] 0 unendlich groß
> > wird. Es existiert also kein Grenzwert.
> >
> >
> >
> >
> > Meine Fragen:
>  >  
> >
> > 1.) Stimmt meine Argumentation und ist sie ausreichend?
>  >  
> > 2.) Jene Grenzwertbetrachtung zur Klassifizierung von
> > Singularitäten hat
> > aber nichts mit der Grenzwertbestimmung der Reihe, also der
> >  

> > Summenbestimmung der zu betrachtenden Reihe zu tun, oder?
>  >  
> >
> >
> >
> >
> > Gruß, Marcel
>
>
>
>
> Allgemein: nimm an, f hat eine isolierte Singularität in
> [mm]z_0[/mm] = 0. Dann hat f die Laurententwicklung
>
>
> f(z) = [mm]\summe_{n=0}^{\infty}b_nz^n[/mm] +
> [mm]\summe_{n=}^{\infty}\bruch{a_n}{z^n}[/mm]
>  
>
> die 2. Reihe heißt Hauptteil, die 1. Reihe Nebenteil.
>  
> Es gilt: f hat in 0 eine wesentliche Singularität [mm]\gdw a_n \not=[/mm]
> 0 für unendlich viele n.
>  
> Nun zu [mm]f(z):=sin(\bruch{1}{z})[/mm] =
> [mm]\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}[/mm]=
>  1
> +[mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1},[/mm]
>  
>
> Hier ist derNebentteil die konstante Funktion 1 und der
> Hauptteil =
> [mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}[/mm]
>  
>
> Wieviele Koeff. im Haupteil sind [mm]\not=[/mm] 0 ?

In diesem Fall sind unendlich viele der Koeffizienten [mm] \not=0. [/mm]

> FRED
>  
>
> P.S. das Residuum = [mm]a_1[/mm] (erinnerst Du Dich an unsere
> gestrige Diskussion ? )


Bezug
                        
Bezug
Klassifizierung, Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Mi 11.03.2009
Autor: fred97


> > > Hallo Matheraum,
>  >  >  
> > >
> > >
> > > es ist die Singularität der Funktion
> > > [mm]f(z):=sin(\bruch{1}{z})[/mm] zu bestimmen und zu
> > > klassifizieren.
>  >  >  
> > >
> > >
> > >
> > > Mein Problem:
>  >  >  
> > >
> > >
> > > Wie folgert man aus der Reihe
>  >  >  
> > >
> > >
> >
> [mm]\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1},[/mm]
>  >  >  
> > >
> > >
> > > dass es sich hier um eine wesentliche Singularität
> > > handelt?
>  >  >  
> > >
> > >
> > >
> > > Mein Lösungsvorschlag:
>  >  >  
> > >
> > >
> > > Ich erhalte
>  >  >  
> > >
> > > [mm]\limes_{z\rightarrow 0}\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}=\infty,[/mm]
>  
> >  

> > >  

> > >
> >
> >
> >
> > Das ist nicht richtig ! Schau Dir mal den Satz von
> > Casorati-Weierstraß an !
>  
>
> Gemäß dem Satz muss gelten:
>  
> Zu jedem [mm]\omega \in \IC[/mm] muss
>
> 1.) eine Folge [mm](z_{n})[/mm] mit lim [mm]z_{n}=z_{0}[/mm] und
>  
> 2.) eine Folge [mm]f(z_{n})=\omega[/mm] exisitieren.
>  
>
> Jetzt habe ich Probleme damit, die Fälle speziell auf diese
> Aufgabe zu übertragen. Der obige Grenzwert muss nun meine
> Singularität 0 oder eine komplexe Zahl sein? Vielleicht
> kannst du mir nochmal einen Schubser geben?


Für diese Aufgabe brauchst Du obigen Satz nicht !

Der Satz besagt: in jeder noch so kleinen Umgebung der wesentlichen Singularität [mm] z_0 [/mm] kommt f jedem Wert w [mm] \in \IC [/mm] beliebig nahe.

Was ich Dir damit sagen wollte:

hat f in [mm] z_0 [/mm] eine wesentliche Sing. so kann jedenfalls

           [mm] \limes_{z\rightarrow z_0}f(z) [/mm] = [mm] \infty [/mm]

nicht gelten !


Weiter gilt folgendes: hat fin [mm] z_o [/mm] eine isolierte Sing. , so gilt:

            [mm] z_0 [/mm] ist ein Pol von f [mm] \gdw \limes_{z\rightarrow z_0}|f(z)| [/mm] = [mm] \infty [/mm]



>  >

> >
> >
> > >
> > > da der Quotient [mm]\bruch{1}{z}[/mm] für [mm]z\to[/mm] 0 unendlich groß
> > > wird. Es existiert also kein Grenzwert.
> > >
> > >
> > >
> > >
> > > Meine Fragen:
>  >  >  
> > >
> > > 1.) Stimmt meine Argumentation und ist sie ausreichend?
>  >  >  
> > > 2.) Jene Grenzwertbetrachtung zur Klassifizierung von
> > > Singularitäten hat
> > > aber nichts mit der Grenzwertbestimmung der Reihe, also der
> > >  

> > > Summenbestimmung der zu betrachtenden Reihe zu tun, oder?
>  >  >  
> > >
> > >
> > >
> > >
> > > Gruß, Marcel
> >
> >
> >
> >
> > Allgemein: nimm an, f hat eine isolierte Singularität in
> > [mm]z_0[/mm] = 0. Dann hat f die Laurententwicklung
> >
> >
> > f(z) = [mm]\summe_{n=0}^{\infty}b_nz^n[/mm] +
> > [mm]\summe_{n=}^{\infty}\bruch{a_n}{z^n}[/mm]
>  >  
> >
> > die 2. Reihe heißt Hauptteil, die 1. Reihe Nebenteil.
>  >  
> > Es gilt: f hat in 0 eine wesentliche Singularität [mm]\gdw a_n \not=[/mm]
> > 0 für unendlich viele n.
>  >  
> > Nun zu [mm]f(z):=sin(\bruch{1}{z})[/mm] =
> >
> [mm]\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}[/mm]=
> >  1

> >
> +[mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1},[/mm]
>  >  
> >
> > Hier ist derNebentteil die konstante Funktion 1 und der
> > Hauptteil =
> >
> [mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}(\bruch{1}{z})^{2n+1}[/mm]
>  >  
> >
> > Wieviele Koeff. im Haupteil sind [mm]\not=[/mm] 0 ?
>  
> In diesem Fall sind unendlich viele der Koeffizienten
> [mm]\not=0.[/mm]
>  


Bingo. Also hat f in 0 eine wesentliche Sing.

FRED





> > FRED
>  >  
> >
> > P.S. das Residuum = [mm]a_1[/mm] (erinnerst Du Dich an unsere
> > gestrige Diskussion ? )
>  


Bezug
                                
Bezug
Klassifizierung, Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Mi 11.03.2009
Autor: Marcel08

Alles klar, vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]