matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKlassenfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Klassenfunktion
Klassenfunktion < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Mi 14.07.2010
Autor: clee

Aufgabe
Sei [mm] \psi [/mm] Klassenfunktion auf H [mm] \subset [/mm] G, dann ist
[mm] \bruch{1}{ |G| } \summe_{g \in G} \psi^G(g)=\bruch{1}{ |H| } \summe_{h \in H} \psi(g) [/mm]

wobei [mm] \psi^G(g):=\bruch{1}{ |H| } \summe_{g \in G, xgx^{-1} \in H} \psi (xgx^{1}) [/mm] die von [mm] \psi [/mm] induzierte Klassenfunkton auf G ist.

ich muss in 2 tagen einen vortrag halten und verstehe nicht wir man das zeigt. scheinbar funktionniert das irgendwie so:

[mm] \bruch{1}{ |G| } \summe_{g \in G} \psi^G(g) [/mm]
[mm] =\bruch{1}{ |G||H| } \summe_{g \in G} \summe_{g \in G, xgx^{-1} \in H} \psi(xgx^{-1}) [/mm]
[mm] =\bruch{1}{ |G||H| } \summe_{(g,x) \in GxG, xgx^{-1} \in H} \psi(xgx^{-1}) [/mm]

wenn ich jetzt zeigen kann, dass es für alle $h [mm] \in [/mm] H$ $ |G|$ Paare $(g,x)$ mit [mm] $xgx^{-1}=h$ [/mm] gibt müsste ich ja fertig sein.

anscheinend sieht man das irgendwie mit der bahnformel: $|G|=|G [mm] \circ x|*|G_x|=|\{gxg^{-1}|g \in G\}|*|\{g \in G|gxg^{-1}=x\}|$ [/mm] wie das funktionnieren soll verstehe ich aber nicht ...

wär super wenn mir das jemand erklären könnte oder einen anderen beweis zeigen kann.

        
Bezug
Klassenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 04:56 Do 15.07.2010
Autor: felixf

Moin

> Sei [mm]\psi[/mm] Klassenfunktion auf H [mm]\subset[/mm] G, dann ist
>  [mm]\bruch{1}{ |G| } \summe_{g \in G} \psi^G(g)=\bruch{1}{ |H| } \summe_{h \in H} \psi(g)[/mm]

Das hinten soll sicher ein [mm] $\psi(h)$ [/mm] sein, oder?

> wobei [mm]\psi^G(g):=\bruch{1}{ |H| } \summe_{g \in G, xgx^{-1} \in H} \psi (xgx^{1})[/mm]

Und hier soll rechts [mm] $\sum_{x \in G, x g x^{-1} \in H} \psi(x [/mm] g [mm] x^{-1})$ [/mm] stehen, oder?

> die von [mm]\psi[/mm] induzierte Klassenfunkton auf G ist.
>  ich muss in 2 tagen einen vortrag halten und verstehe
> nicht wir man das zeigt. scheinbar funktionniert das
> irgendwie so:
>  
> [mm]\bruch{1}{ |G| } \summe_{g \in G} \psi^G(g)[/mm]
>  [mm]=\bruch{1}{ |G||H| } \summe_{g \in G} \summe_{g \in G, xgx^{-1} \in H} \psi(xgx^{-1})[/mm]
>  
> [mm]=\bruch{1}{ |G||H| } \summe_{(g,x) \in GxG, xgx^{-1} \in H} \psi(xgx^{-1})[/mm]

Dann wuerd dieser Schritt naemlich wesentlich mehr Sinn machen.

> wenn ich jetzt zeigen kann, dass es für alle [mm]h \in H[/mm] [mm]|G|[/mm]
> Paare [mm](g,x)[/mm] mit [mm]xgx^{-1}=h[/mm] gibt müsste ich ja fertig
> sein.

Ja.

> anscheinend sieht man das irgendwie mit der bahnformel:

Bei der Operation "Konjugation"?

> [mm]|G|=|G \circ x|*|G_x|=|\{gxg^{-1}|g \in G\}|*|\{g \in G|gxg^{-1}=x\}|[/mm]
> wie das funktionnieren soll verstehe ich aber nicht ...

Es ist ja $| [mm] \{ (g, x) \in G^2 \mid x g x^{-1} = h \}| [/mm] = [mm] \sum_{g \in G} |\{ x \in G \mid x g x^{-1} = h \}|$. [/mm] Die Menge der $g$, fuer die [mm] $|\{ x \in G \mid x g x^{-1} = h \}| [/mm] > 0$ ist, ist ja gerade [mm] $\{ y h y^{-1} \mid y \in G \}$. [/mm] Sei nun $g = y h [mm] y^{-1}$ [/mm] fuer ein $y [mm] \in [/mm] G$; dann ist [mm] $\{ x \in G \mid x g x^{-1} = h \} [/mm] = [mm] \{ x \in G \mid x y h y^{-1} x^{-1} = h \} [/mm] = [mm] \{ x \in G \mid (x y) h (x y)^{-1} = h \} [/mm] = [mm] \{ x \in G \mid x h x^{-1} = h \} \cdot y^{-1}$; [/mm] insbesondere gilt [mm] $|\{ x \in G \mid x g x^{-1} = h \}| [/mm] = [mm] |\{ x \in G \mid x h x^{-1} = h \}| [/mm] = [mm] |G_h|$ [/mm] -- dies ist unabhaengig von $y$!

Also ist $| [mm] \{ (g, x) \in G^2 \mid x g x^{-1} = h \}| [/mm] = [mm] |\{ y h y^{-1} \mid y \in G \}| \cdot |G_h| [/mm] = |G [mm] \circ [/mm] h| [mm] \cdot |G_h| [/mm] = |G|$ nach der Bahnformel.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]