matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenKlassenarbeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Klassenarbeit
Klassenarbeit < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassenarbeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Do 20.07.2006
Autor: Banaman

Hallo Leute!
Ich bin wieder mal so schlau diesen Thread 1 Tag vor der Klassenarbeit ins Forum zu stellen ;P! Ich habe ein Problem zu folgender Aufgabe und bitte dringendst um Hilfe: Ein Fenster hat einen Rahmen von 6m und die Form eines Rechtecks auf das ein Halbkreis aufgesetzt ist. Man weiss, dass die Breite b ist, Länge 2r und Radius r (es sind keine Zahlen angegeben; und a propos wo finde ich geometrische Figuren???).
Ich habe selbst angefangen: A=RE+Halbkreis
= [mm] 2r*b+\bruch {1} {2} *pi*r^2[/mm] (wie schreibt man eig. pi? Finds net im tex)  
Man will den maximalen Radius wissen!
Kann mir bitte jemand innerhalb der nächsten 3 Stunden helfen??? Es ist sehr wichtig! Würd mich freuen über ne Antwort Tschüss Benni
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Klassenarbeit: So scheibt man Pi
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Do 20.07.2006
Autor: Seppel

Hallo!

Um die Kreiszahl Pi darstellen zu lassen, schreibe es so:

\ pi

Natürlich ohne die Leerzeile.

Gruß Seppel

Bezug
        
Bezug
Klassenarbeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 Do 20.07.2006
Autor: M.Rex


> Hallo Leute!
>  Ich bin wieder mal so schlau diesen Thread 1 Tag vor der
> Klassenarbeit ins Forum zu stellen ;P! Ich habe ein Problem
> zu folgender Aufgabe und bitte dringendst um Hilfe: Ein
> Fenster hat einen Rahmen von 6m und die Form eines
> Rechtecks auf das ein Halbkreis aufgesetzt ist. Man weiss,
> dass die Breite b ist, Länge 2r und Radius r (es sind keine
> Zahlen angegeben; und a propos wo finde ich geometrische
> Figuren???).
>   Ich habe selbst angefangen: A=RE+Halbkreis
> = [mm]2r*b+\bruch {1} {2} *pi*r^2[/mm] (wie schreibt man eig. pi?
> Finds net im tex)  
> Man will den maximalen Radius wissen!
>  Kann mir bitte jemand innerhalb der nächsten 3 Stunden
> helfen??? Es ist sehr wichtig! Würd mich freuen über ne
> Antwort Tschüss Benni
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo Benni.

Du kemmst den Unfamge des Fensters (6m). Jetzt weisst du, dass das Fenster rechteckig ist und zwar mit einer Seite b  und der seite mit dem Halbkreis dran. Dieser hat den Radius r. Also gilt [mm] \underbrace{u_{Rechteck}}_{=6m} [/mm] = 2 (2r) + 2b
[mm] \gdw [/mm] 3 = 2r + b  [mm] \gdw [/mm] b = 3-2r.

Dieses kannst du jetzt in die oben erwähnte Flächeninhaltsformel
A = [mm] 2r*b+\bruch [/mm] {1}{2} [mm] *\pi [/mm] * [mm] r^2 [/mm]  einsetzen

Also erhältst du A = 2r(3-2r) + [mm] \bruch{1}{2} \pi [/mm] r² = [mm] 6r-4r²+\bruch{1}{2} \pi [/mm] r² = [mm] (\bruch{\pi}{2} [/mm] -4) r² + 6r.
Das ganze ist eine (nach unten geöffnete) Parabel, deren Scheitelpunkt kannst du berechnen.
(entweder per Extremwertbestimmung, oder per Scheitelpunktsform, oder....)

Hilft das weiter?

Marius

Bezug
                
Bezug
Klassenarbeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Do 20.07.2006
Autor: Banaman

Hoi Marius!
Dankeschön für die Hilfe! :)
Hab die Aufgabe rausgekriegt, bin grad noch fleißig am lernen, hab sie auch schon nem Freund erklärt. Vielen Dank (auch an Seppl für das Pi  ;))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]