matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKomplexität & BerechenbarkeitKlasse NP
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Komplexität & Berechenbarkeit" - Klasse NP
Klasse NP < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klasse NP: Frage zur Definition
Status: (Frage) beantwortet Status 
Datum: 16:58 Mi 26.07.2006
Autor: Karl_Pech

Hallo Zusammen,


Ich würde gerne wissen, ob ich folgende Definition richtig verstehe:


Zitat:

"Eine Sprache [mm]L \in \mathcal{NP}[/mm], wenn es eine in polynomieller Zeit arbeitende Turing Maschine [mm]M(\cdot{},\cdot{})[/mm] und ein Polynom [mm]p[/mm] gibt, so daß [mm]\forall x\in\{0,1\}^{\star}[/mm] gilt:


[mm]\bullet[/mm] Ist [mm]x \in L[/mm], so [mm]\exists y \in \{0,1\}^{\star}[/mm] mit [mm]\operatorname{length}(y) \le p(\operatorname{length}(x))[/mm], so daß [mm]M(x,y)[/mm] akzeptiert.

[mm]\bullet[/mm] Ist [mm]x \notin L[/mm], so gilt [mm]\forall y \in \{0,1\}^{\star}[/mm] mit [mm]\operatorname{length}(y) \le p(\operatorname{length}(x))[/mm], daß [mm]M(x,y)[/mm] die Eingabe verwirft.



Ich habe versucht, daß anhand einer kleinen Übungsaufgabe zu verstehen. Gegeben ist die Sprache [mm]L[/mm] aller Primzahlen, und man soll zeigen, daß [mm]L \in \mathcal{NP}[/mm] ist. Ich dachte mir nun, daß man jede Primzahl ausschließlich durch Einsen kodieren könnte, also so:


[mm]L := \{11,111,11111,\dotsc\}[/mm]


Und [mm]M[/mm] würde dann ausschließlich Eingaben für [mm]x[/mm] akzeptieren, die nur aus Einsen bestehen und für die es ein entsprechendes [mm]y[/mm] gibt. Und das [mm]y[/mm] würde dann z.B. für [mm]n = 5[/mm] so aussehen:


[mm]1011011101111011111[/mm]


[mm]M[/mm] würde dann die Eingabe [mm]x[/mm] nacheinander durch 1, 11, u.s.w. teilen, wobei die Nullen als Trennzeichen dienen sollen. War mindestens eine ganzzahlige Divisionen neben der Ersten und Letzten ohne Rest, so ist [mm]x[/mm] keine Primzahl und wird nicht akzeptiert, bestand [mm]x[/mm] nicht nur aus Einsen wird es auch verworfen. Wie lang ist nun ein [mm]y[/mm] für ein gegebenes [mm]x[/mm]? Es besteht aus [mm]\operatorname{length}x-1[/mm] Nullen und [mm]\tfrac{\operatorname{length}x(\operatorname{length}x+1)}{2}[/mm] Einsen. Es gilt also:


[mm]\operatorname{length}(y) \le 0.5\operatorname{length}^2x + 1.5\operatorname{length}x - 1 =: p(\operatorname{length}x)[/mm]


Also wenn es nun ein solches [mm]M[/mm] gibt(, das man auch durch falsche Zertifikate wie 1110111 oder 000 nicht "austricksen" kann [kopfkratz3]), dann ist [mm]L\in\mathcal{NP}[/mm], richtig?


Danke für die Hilfe!



Viele Grüße
Karl





        
Bezug
Klasse NP: Antwort
Status: (Antwort) fertig Status 
Datum: 06:56 Di 08.08.2006
Autor: mathiash

Hallo und guten Morgen Karl,

Du hast hier die Primzahlen unär codiert, das ist gelinde gesagt mit Vorsicht zu geniessen, denn der Komplexitätsstatus hängt wesentlich von der
genauen Codierung ab. Für Deine Sprache L der Unärcodierungen von Primzahlen ist  es leicht einzusehen, dass sie sogar in P ist.

Wenn Du jedoch Primzahlen binár anstatt unär codierst, so hat also die Codierung von  [mm] p\in\N [/mm]
die Länge [mm] O(\log [/mm] p) anstatt O(p), und d.h. Du kannst nicht einfach durch Teilbarkeitstest mit allen n<p in Polynomzeit sehen, ob p prim ist (es gibt
dann nämlich  [mm] \Theta (p)=\Theta (2^{\log (p)}) [/mm]  viele solche, also exponentiell in der Codierungslänge von p viele.

Für die Sprache L' der Binärcodierungen von Primzahlen gilt trotzdem [mm] L'\in [/mm] NP, und es gilt sogar [mm] L'\in [/mm] P, aber das wollen wir hier jetzt nicht besprechen,
nicht wahr ?

[mm] L'\in [/mm] NP zeigt man mit einem kleinen zahlentheoretischen Argument, das sehr gut im Buch Computational Complexity von Christos Papadimitriou
beschrieben ist, ich werd es später noch hier in den Strang setzen.

Deine allgemeine Charakterisierung von NP sieht man wie folgt ein:

Wenn in NP, gibt es ja eine Polyzeit-NTM  M für L, und dann kannst Du eine deterministische Polyzeit-Maschine [mm] M_2 [/mm]
für L entwerfen, die zu gegebener Eingabe x und String y testet, ob y eine akzeptierende Berechnung von M auf Eingabe x codiert.

Gruss,

Mathias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]