matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesKlammern kürzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Klammern kürzen
Klammern kürzen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klammern kürzen: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:00 Mi 02.01.2008
Autor: ShubNiggurath

Aufgabe
[mm] \bruch{2(a+b)³}{(2a+2b)³}+\bruch{2(a-b)²}{4a+4b} [/mm]    

Ich bin wie folgt vorgegangen:

1. Nennersuche (hier (2a+2b)²
2. den 2. Bruch mit (a+b) multiplizieren (dann müsste 2a+2b)² rauskommen wenn mich nicht alles täuscht, also in der gekürzten Fassung
3. jetzt habe ich ja stehen: [mm] \bruch{2(a+b)³-2(a-b)²(a+b)}{(2a+2b)²} [/mm]

Frage: wie genau kürze ich jetzt weiter, brauche da nur einen Tipp, weil die Aufgabe scheint mir so schwer auch nicht zu sein nur irgendwie muss ich da was falsch machen. Muss ich vorher erst den Zähler ausmultiplizieren (das kann aber nicht sein - der Mathematiker ist ja bekanntlich faul und von daher muss es da einen Kniff geben)

Wäre somit wiedermal für einen kurzen Hinweis dankbar, Lösung soll sein: [mm] \bruch{a²+b²}{a+b} [/mm]  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Klammern kürzen: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Mi 02.01.2008
Autor: froopkind

Da die Aufgabe jetzt schon von jemand anderem bearbeitet wird, von mir nur ein Hinweis:
In deinem Zwischenergebnis aus 3. steckt scheinbar schon ein Fehler, denn das ist nicht mehr gleich der Lösung.

Bezug
        
Bezug
Klammern kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mi 02.01.2008
Autor: angela.h.b.


> [mm]\bruch{2(a+b)³}{(2a+2b)³}+\bruch{2(a-b)²}{4a+4b}[/mm]  
> Ich bin wie folgt vorgegangen:
>  
> 1. Nennersuche (hier (2a+2b)²

Hallo,

ich weiß nun nicht so recht, was Du mit "Nennersuche" meinst...

Ich sehe in Deiner Rechnung 2 Nenner:

[mm] (2a+2b)³=(2*(a+b))^3=8*(a+b)^3 [/mm]    

und  

4a+4b=4(a+b)

Was man nun suchen sollte, wäre der Hauptnenner, und dieser Hauptnenner ist [mm] 8*(a+b)^3 [/mm] .

Das bedeutet, daß man mit dem ersten Bruch gar nichts weiter machen muß, den zweiten kann man auf den Hauptnenner bringen durch Erweitern mit  [mm] 2*(a+b)^2, [/mm]

und wenn Du dann sinnvoll weiterrechnest, solltest Du zu einem Ergebnis kommen.

Gruß v. Angela

EDIT: ich habe nun auchmal über den Bruchstrich geschaut.

Wenn Du Deine Nenner so schreibst, wie ich es oben getan habe, hast Du

[mm] \bruch{2(a+b)³}{8*(a+b)^3}+\bruch{2(a-b)²}{4(a+b)}. [/mm]

Du kannst nun kürzen, dadurch vereinfacht sich Deine Aufgabe zu [mm] \bruch{1}{4}+\bruch{(a-b)²}{2(a+b)}, [/mm]

nun Hauptnenner usw.


Bezug
                
Bezug
Klammern kürzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Mi 02.01.2008
Autor: ShubNiggurath

besten Dank - mir wurde wiedermal geholfen :)

Bezug
                        
Bezug
Klammern kürzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Mi 02.01.2008
Autor: angela.h.b.

Guck Dir meine bearbeitete Antwort an, Du kannst Arbeit sparen!

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]