matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauKinetik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maschinenbau" - Kinetik
Kinetik < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kinetik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Fr 21.05.2010
Autor: max_e

hallo,

folgende aufgabe ist gegeben : eine punktmasse liegtg vor einer um s vorgespannten ,masselosen feder (federkonstante c) auf einer schiefen
ebene. Zwischen der punktmasse und der ebene herrscht reibung
geg: s, c, [mm] \mu,\alpha,m [/mm]

a.) gesucht geschwindigkeit der punktmasse beim verlassen der feder
b.) an welchem ort x bleibt die masse liegen

zu.a)

GGW aufstellen : [mm] a_r [/mm] * m = c*s - [mm] G*sin\alpha- m*g*\mu*cos\alpha [/mm]

[mm] a_r=c*s/2-g(sin\alpha+\mucos\alpha) [/mm]

--> [mm] V(s)=\wurzel{vo²+2\integral_{0}^{s}{f(s) ds}} [/mm]

[mm] V(s)=\wurzel{cs^2/m-2gs(sin\alpha+\mu cos\alpha)} [/mm]

nun soll ich die strecke ermitteln im punkt b und bin völlig überfordert wie ich das machen soll, geschwindigkeit integrieren ist hier ja wirklich nicht einfach, gibts da einen anderen weg...'?

        
Bezug
Kinetik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Fr 21.05.2010
Autor: Calli


> zu.a)
>
> GGW aufstellen : [mm]a_r[/mm] * m = c*s - [mm]G*sin\alpha- m*g*\mu*cos\alpha[/mm]

Hä ???
Was soll der Index "r" bei a ?

> [mm]a_r=c*s/2-g(sin\alpha+\mucos\alpha)[/mm]

???
Was hast Du hier gerechnet ?

> --> [mm]V(s)=\wurzel{vo²+2\integral_{0}^{s}{f(s) ds}}[/mm]
>  
> [mm]V(s)=\wurzel{cs^2/m-2gs(sin\alpha+\mu cos\alpha)}[/mm]

Die Geschwindigkeit v soll mit wachsendem Weg s unbegrenzt zunehmen ???
[notok]

• Zu Beginn ist die Bewegung der Masse Teil einer harmonischen Bewegung !

• Wie groß ist dabei die Rückstellkraft und nach welcher Zeit (Periode) ist diese harmonische Bewegung beendet ?

• Welche Bewegungsform setzt dann ein ?

Ciao Calli



Bezug
                
Bezug
Kinetik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 Fr 21.05.2010
Autor: max_e

1.) _r steht für die Richtung des Einheitsvektors, den ich auch die Gerade
liege

2.) Die Formel ist zur Berechnung der Geschwindigkeit

3.) Das Ergebnis ist keine allgemeingültige Funktion, es ist ein Wert den
die Geschwindigkeit exact am Punkt beim Verlassen der Feder besitzt

.....ich suche immer noch einen Weg den Ort zu bestimmen
meine Geschwindigkeit passt mit der Musterlösung überein

Bezug
                        
Bezug
Kinetik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 Fr 21.05.2010
Autor: Calli


> 3.) Das Ergebnis ist keine allgemeingültige Funktion, es
> ist ein Wert den
> die Geschwindigkeit exact am Punkt beim Verlassen der Feder
> besitzt

Ach so, jetzt verstehe ich es. "s" ist der vorgegebene Federweg !
[lichtaufgegangen] [ok]

Und nach Erreichen dieser Geschwindigkeit [mm] v_s [/mm] hat die Masse kinetische Energie, die sich aufteilt auf potenzielle Energie und Reibarbeit.

Ciao Calli



Bezug
                                
Bezug
Kinetik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:43 Sa 22.05.2010
Autor: max_e

hallo zusammen,

es ist so  wie calli es in seiner Mitteilung geschrieben hat.. Ich habe die Geschwindigkeit des Massenpunktes exact beim verlassen der Feder ermittelt Nun stellt sich die Frage wie weit sich der Massenpunkt noch fortbewegt bis er entgültig durch die anderen Kräfte zum
erliegen kommt.


Bezug
                                        
Bezug
Kinetik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:44 Sa 22.05.2010
Autor: max_e

Frage noch offen!

Bezug
                                                
Bezug
Kinetik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 Sa 22.05.2010
Autor: Calli


> Frage noch offen!

Wieso soll die Frage noch offen sein ? [verwirrt]

Wenn Du mit meinen Hinweisen nicht weiter kommst, dann stelle bitte dazu konkrete Fragen !

• Was ist daran schwierig, den Zuwachs an potenzieller Energie zu berechnen ?

• Was ist daran schwierig, die gegen die Reibung  zu leistende Arbeit zu
  berechnen ?

• Wie bist Du auf die Formel für [mm] v_s [/mm] gekommen ?
  Welcher physikalische Zusammenhang liegt dieser Formel zugrunde ?

Ciao Calli







Bezug
                                        
Bezug
Kinetik: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Sa 22.05.2010
Autor: leduart

Hallo
Damit es grün wird: Calli hat doch Energiesatz gesagt.
Gruss leduart

Bezug
                                                
Bezug
Kinetik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Sa 22.05.2010
Autor: max_e

hallo,

Die Aufgabe soll eben nicht mit dem Energiesatz gelöst werden.
Aufgabe muss über GGW-System gelöst werden(Bereich Kinetik).
danke..

gruss maxe

Bezug
                                                        
Bezug
Kinetik: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Sa 22.05.2010
Autor: leduart

Hallo
1.wenn man den Energiesatz differenziert hat man die Bewegungsgleichung!
2. sollst du auch [mm] v_0 [/mm] so ausrechnen dann hast du ja für die
s''=c*s-k in k alle konst zusammengefasst.
s hier variabel, dein s=s1
die Dgl lösen mit s(0)=0 s'(0)=0 dann das gegebene s1 einsetzen , daraus t1, daraus v(t1)
in b hast du ja nur noch wegunabh. Kräfte. mit der in a) ausgerechneten Anfangsgeschw.
was ein GGW ist weiss ich nicht, wie du auf dein V im 1. tem post kommst auch nicht.
übrigens: die Gleichung
s''=c*s-k kann man allgemein integrieren:
mit s' mult
s''*s'=css'-k*s'
[mm] 1/2*(s'^2)'=1/2*c*(s^2)'-ks' [/mm]
integriert
[mm] 1/2s'^2=1/2c*s^2-k*s [/mm] +A
mit s(0)=s'(0)=0 folgt A=0
und du hast praktisch den Energiesatz, also ist das ja auch reine Kinematik so wie du es machst. , da du F=ma verwendest ist das aber nicht mehr Kinematik, sondern Dynamik

Gruss leduart

Bezug
                                                                
Bezug
Kinetik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 So 23.05.2010
Autor: max_e

ok alles klar habs jetzt verstanden,

danke

gruss max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]