matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikKinematik - Beschleunigung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "HochschulPhysik" - Kinematik - Beschleunigung
Kinematik - Beschleunigung < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kinematik - Beschleunigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Mi 14.10.2009
Autor: matzekatze

Hi Leute!

Ich verstehe nicht wie man den Zusammenhang
[mm] \vec{a} (t) = \dot v \cdot \vec{\hat t} + \frac{v^{2}}{\rho} \cdot \vec{\hat n}[/mm]

herleitet.

Ich weiß das der Tangentialeinheitsvektor [mm]\vec{\hat t} [/mm] durch die Normierung des Geschwindigkeitsvektors [mm]\vec{v}[/mm] berechnet wird und das man dann die Beschleunigung auch so formulieren kann:

[mm] \vec{a} = \vec{\dot v} = \frac{d}{dt}(v \cdot \vec{\hat t}) [/mm]

Da die Geschwindigkeit und somit auch der Tangentialeinheitsvektor von der Zeit abhängig sind, kann man das ganze per Produktregel zu diesem Ausdruck bringen:

[mm] \vec{a} = \vec{\dot v} = \frac{d}{dt}(v \cdot \vec{\hat t}) = \dot v \cdot \vec{\hat t} + v \frac{d\vec{\hat t}}{dt} [/mm]

Nun ist mir der letze Schritt aber nicht mehr klar, wie ich dann noch den Krümmungsradius und den Normalenvektor mit reinbringe beim letzten Summanden. Irgendwie muss man die Zeitableitung des Tangentialnormalenvektors umschreiben, aber wie??

Vielen Dank schonmal!

Lg

Matze

        
Bezug
Kinematik - Beschleunigung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Mi 14.10.2009
Autor: rainerS

Hallo Matze!

> Hi Leute!
>  
> Ich verstehe nicht wie man den Zusammenhang
> [mm]\vec{a} (t) = \dot v \cdot \vec{\hat t} + \frac{v^{2}}{\rho} \cdot \vec{\hat n}[/mm]
>  
> herleitet.
>  
> Ich weiß das der Tangentialeinheitsvektor [mm]\vec{\hat t}[/mm]
> durch die Normierung des Geschwindigkeitsvektors [mm]\vec{v}[/mm]
> berechnet wird und das man dann die Beschleunigung auch so
> formulieren kann:
>  
> [mm]\vec{a} = \vec{\dot v} = \frac{d}{dt}(v \cdot \vec{\hat t})[/mm]
>  
> Da die Geschwindigkeit und somit auch der
> Tangentialeinheitsvektor von der Zeit abhängig sind, kann
> man das ganze per Produktregel zu diesem Ausdruck bringen:
>  
> [mm]\vec{a} = \vec{\dot v} = \frac{d}{dt}(v \cdot \vec{\hat t}) = \dot v \cdot \vec{\hat t} + v \frac{d\vec{\hat t}}{dt}[/mm]
>  
> Nun ist mir der letze Schritt aber nicht mehr klar, wie ich
> dann noch den Krümmungsradius und den Normalenvektor mit
> reinbringe beim letzten Summanden. Irgendwie muss man die
> Zeitableitung des Tangentialnormalenvektors umschreiben,
> aber wie??

Das die Zeitableitung von [mm] $\Vec{\Hat{t}}$ [/mm] senkrecht auf [mm] $\Vec{\Hat{t}}$ [/mm] steht, ergibt sich durch Ableiten von [mm] $\Vec{\Hat{t}}^2 [/mm] = 1$. Die Ableitung der linken Seite ist nach der Produktregel

[mm] \bruch{d}{dt} \Vec{\Hat{t}}^2 = 2 \Vec{\Hat{t}} * \bruch{d}{dt}\Vec{\Hat{t}} [/mm],

und da die Ableitung der rechten Seite 0 ist, muss [mm] $\bruch{d}{dt}\Vec{\Hat{t}}$ [/mm] senkrecht auf [mm] $\Vec{\Hat{t}}$ [/mm] stehen, also die Form [mm] $k*\Vec{\Hat{n}}$ [/mm] haben.

Um $k$ zu bestimmen: wie ist [mm] $\rho$ [/mm] definiert!

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]