matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauKinematik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maschinenbau" - Kinematik
Kinematik < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kinematik: Endgeschwindigkeit
Status: (Frage) beantwortet Status 
Datum: 21:57 Di 05.10.2010
Autor: Daniel2010

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo, wäre froh wenn mir jemand helfen kann. Habe heute meine zweite Physikvorlesung in Kinematik gehabt. Die Profesorin schrieb mit einem irrsins tempo eine Herleitung zur Endgeschwindigkeit an die Tafel. [mm] V=\wurzel(2as+(V0)^2). [/mm] Hat sie hergeleitet aus V=at+V0 und s=(V0+V)/2*t
Hab zuhause gemerkt, dass sie mit (V0+V)*1/2 wahrscheinlich die durchschnittsgeschw. meint. Hab mir mal ein paar Werte ausgedacht und sie in ihre Formel eingesetzt. Danach habe ich mit meiner Formel [mm] V=V0+a*\wurzel(2s/a) [/mm] gerechnet, da kam was ganz anderes heraus. Ich dachte auch das man so die durchschnittsg. nicht ausrechnen kann. Sie meinte noch das diese Herleitung zur endgeschw. vielleicht in der Klausur drankommt. Irr ich mich jetzt oder hat die Profesorin bei eingentlich einer simplen Aufgabe einen schweren Fehler gemacht.


        
Bezug
Kinematik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Di 05.10.2010
Autor: chrisno

[mm]v=\wurzel{2as+(v_0)^2}[/mm]
Geschweifte Klammern um den Wurzelterm. Großes V steht für Volumen.

> Hat sie hergeleitet aus [mm] v=at+v_0 [/mm] und [mm] s=(v_0+v)/2*t [/mm]
>  Hab zuhause gemerkt, dass sie mit (V0+V)*1/2
> wahrscheinlich die durchschnittsgeschw. meint.

Ja.

1. [mm] $v=at+v_0$ [/mm]
2. [mm] $s=(v_0+v) \cdot \bruch{t}{2}$ [/mm]
2. umgeformt $t = [mm] \bruch{2s}{v_0+v}$ [/mm]
2. in 1. eingesetzt [mm] $v=a\bruch{2s}{v_0+v}+v_0$ [/mm]
Auf beiden Seiten [mm] $v_0$ [/mm] subtrahiert, mit [mm] $(v_0+v)$ [/mm] multipliziert, 3. Binomische Formel
[mm] $v^2-v_0^2=2sa$ [/mm]
Nach v auflösen und das Ergebnis steht da.

Hab mir mal

> ein paar Werte ausgedacht und sie in ihre Formel
> eingesetzt. Danach habe ich mit meiner Formel
> [mm]V=V0+a*\wurzel(2s/a)[/mm] gerechnet,

Wo kommt Deine Formel her? Wie hast Du sie hergeleitet?

> da kam was ganz anderes
> heraus.

Na klar.

> Ich dachte auch das man so die durchschnittsg.
> nicht ausrechnen kann.

Was willst Du nun ausrechnen? Oben war es die Endgeschwindigkeit.

> Sie meinte noch das diese Herleitung
> zur endgeschw. vielleicht in der Klausur drankommt.

Das wäre ein nette, einfache Aufgabe. Insbesondere deshalb, weil Du nun die Herleitung auch noch auswendig lernen kannst.

> Irr ich
> mich jetzt oder hat die Profesorin bei eingentlich einer
> simplen Aufgabe einen schweren Fehler gemacht.

Was soll sie denn falsch gemacht haben?


Bezug
                
Bezug
Kinematik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:00 Mi 06.10.2010
Autor: Daniel2010

Danke erstmal für die schnelle Antwort.
Aber ich weis immer noch nicht wie die Formel zustande kommt. s=(v0+v)*t/2
Warum wird in dieser Formel die Anfangsgeschw. v0 halbiert?
Ich dachte die Endgeschwindigkeit muss man über v=v0+at ausrechnen. Dann mit [mm] s=a/2*t^2 [/mm] nach t umstellen und in die erste Gleichung einsetzen. Dabei kommt v=v0+a*wurzel(2s/a) raus. Hab mir jetzt mal ein v , t  Koordinatensystem aufgezeichnet. Dabei entsteht doch eine steigende Gerade, die in v0 beginnt, also oberhalb der x-Achse. Die Fläche entspricht denke ich der Strecke. Sie entsteht durch ein rechteck mit dreieck und kann doch dadurch nicht der Formel s=(v0+v)/2*t entsprechen.

Bezug
                        
Bezug
Kinematik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:27 Mi 06.10.2010
Autor: Daniel2010

Jetzt hab ichs glaub ich doch noch kapiert.Mit dem Koordinatensystem kann man die Formel doch gut graphisch herleiten. Bei der anderen Formel hab ich den Streckenanteil der konstanten Geschwindigk. weggelassen.
Vielleicht könnte mir jemand eine rechnerische Herleitung der Formel beschreiben, da sie mir nicht bekannt war.
Vielen Dank im Voraus.  

Bezug
                        
Bezug
Kinematik: Antwort
Status: (Antwort) fertig Status 
Datum: 05:25 Mi 06.10.2010
Autor: Hugo_Sanchez-Vicario

Hallo Daniel,

schön wenn du es kapiert hast... ;-)

Also die Fläche unter dem Graphen im v-t-Diagramm steht für den zurückgelegten Weg. Diese ist, wie du richtig gesagt hast, ein Rechteck und ein Dreieck. Man könnte das auch als Trapez auffassen.

Die parallelen Seiten stehen dabei parallel zur v-Achse. Die linke Seite hat die Länge [mm] $v_0$, [/mm] die rechte Seite hat die Länge $v$. Der Abstand zwischen den parallelen Seiten (d.h. die Höhe des Trapezes) ist $t$. Dass es sich hier um ein Trapez handelt, ist auf den ersten Blick vielleicht nicht gleich einleuchtend. Wenn man das Diagramm um 90° nach rechts dreht, sollten aber alle Zweifel verschwinden.

Aufgrund der Flächenformel fürs Trapez ist dessen Flächeninhalt dann
[mm] $\frac{a+c}{2}\cdot [/mm] h$, also hier: [mm] $\frac{v_0+v}{2}\cdot [/mm] t$.

Liebe Grüße
Hugo

Bezug
                                
Bezug
Kinematik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Mi 06.10.2010
Autor: Daniel2010

Hallo,
hab schon alles kapiert. Hab heute morgen die endgeschw. über die grundgleichung v=s/t hergeleitet. Hab keine Fragen mehr.
Danke noch mal an alle.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]