Kinematik < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:48 Mo 22.12.2008 | Autor: | cascada |
Aufgabe | Zwei Jungen laufen in geraden Richtungen unter rechtem Winkel auseinander, der eine mit der Geschwindigkeit [mm] v_{1}= [/mm] 3 m/s, der andere mit [mm] v_{2}= [/mm] 4 m/s.
a)Wie groß ist ihre Relativgeschwindigkeit kurz nach dem Start?
b) Wie groß ist ihr gegenseitiger Abstans nach 5s?
c) In beiden Richtungen sind 30m vom Start entfernt Male. Jeder Junge läuft zuerst zum einen, von dort auf dem nächsten Weg zum anderen Mal. In welchem Abstand vom Startpunkt treffen sie sich? (Skizze!)
[Dateianhang nicht öffentlich] |
Hallo!
Ich weiß, die Aufgabenstellung ist trivial, trotzdem hänge ich an der Fragestellung c).
a) habe ich einfach über den Pythagoras gelöst und b) genauso. Die Lösung zu a) sind 5 m/s und für b) 25m.
Die Lösung für c) sind 22,4 m, nur komm ich darauf nicht. Hab mir eine Skizze angefertigt, aber die hilft mir nicht viel weiter.
[Dateianhang nicht öffentlich]
Evtl kann mir jemand nen kleinen Tipp geben, welchen Lösungsweg ich einzuschlagen habe.
Danke schon einmal.
- Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. -
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:55 Mo 22.12.2008 | Autor: | Loddar |
Hallo cascada!
Nach wieviel Sekunden erreicht denn jeder sein Mal? Wieweit sind die beiden Male voneinander entfernt?
Der Schnellere hat ja bereits einen gewissen Vorsprung, wenn der Langsamere an sein Mal kommt. Wie groß ist dann der Abstand dieser beiden Läufer, wenn sie nunmehr mit einer Relativgeschwindigkeit von 7 m/s aufeinander zulaufen?
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:41 Mo 22.12.2008 | Autor: | cascada |
Hi Loddar!
Erstmal danke für die rasante Antwort.
Deine Tipps haben mir schon mal viel geholfen. Da ich nicht exakt auf das vorgegebene Ergebnis komme, könntest du meinen Lösungsweg evtl nachvollziehen und sagen, ob es korrekt gerechnet ist?
Lösungsweg:
-Jungs 1 mit [mm] v_{1} [/mm] zu seinem Mal: [mm] t_{1}=\bruch{30m}{3 m/s}=10s
[/mm]
-analog Junge 2: [mm] t_{2}=7,5s
[/mm]
[mm] \Rightarrow \Delta [/mm] t = 2,5s
- In diesen 2,5s kommt Junge 1 7,5m weit
- Beide Male sind [mm] \wurzel{(30m)^{2}+(30m)^{2}} [/mm] = 42,43 m voneinander entfernt. Da aber Junge 1 schon 7,5m gelaufen ist, bleiben 34,93m übrig, die die beiden mit einer resultieren Geschwindigkeit von 7 m/s aufeinander zulaufen.
- Der Zeitpunkt bis sie aufeinanderstoßen ergibt sich somit zu: [mm] T_{T} [/mm] = [mm] \bruch{34,93m}{7 m/s} [/mm] = 4,99s
- Junge 1 legt in 4,99s eine Strecke von 14,97m zurück und Junge 2 eine Strecke von 19,96m.
- Den Abstand zum Startpunkt habe ich dann mit dem Cosinussatz berechnet:
x = [mm] \wurzel{30^{2}+19,96^{2}-2\*30\*19,96\*cos45°}
[/mm]
Die 45° ergeben sich daraus, dass es sich hierbei um ein gleichseitiges Dreieck handelt, dessen Spitze den Winkel 90 einschliesst.
Somit komme ich auf ein Ergebnis von 21,25m. Dies weicht um 1,15m vom vorgegebenen ab. Jetzt stellt sich mir die Frage, ob ich einen Fehler habe, oder den Unterschied auf Rundungsfehler schieben kann ;)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:03 Mo 22.12.2008 | Autor: | cascada |
Oh man! Leichtsinnsfehler @_@
Dann ändern sich alle meine folgenden Werte und ich komm auch auf das richtige Ergebnis von 22,4m.
Danke nochmal! Du hast mir sehr geholfen! Und das auch noch super schnell :D
|
|
|
|