matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenKettenregel verkettet,implizit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentialgleichungen" - Kettenregel verkettet,implizit
Kettenregel verkettet,implizit < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel verkettet,implizit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:17 Di 10.04.2012
Autor: qsxqsx

Hallo,

Ich habe nen grosses Problem: Eine Funktion ist gegeben die sich wieder selbst aufruft, sodass das ableiten fast unmöglich wird...?

Es soll gezeit werden, dass p(x,t) die Differential Gleichung [mm] (\bruch{\partial}{\partial t} [/mm] + [mm] c(p)*\bruch{\partial}{\partial x})*p(x,t) [/mm] = 0 erfüllt!

wobei p(x,t) := p(x - [mm] \integral_{0}^{t}{c(p(y(t'),t')) dt}) [/mm]
mit y(t') = x - [mm] \integral_{t'}^{t}{v(t'')dt''} [/mm]
mit [mm] \bruch{dy(t')}{dt'} [/mm] = v(t') = c(p(y(t'),t'))

Naja einfach gesagt die Kettenregel anwenden...nur leider hört das nie auf. Bzw. nach t kann ich ableiten da ja das Integral dann einfach weg fällt. Aber nach x geht es unendlich weiter, da kein Integral bezüglich x vorkommt!

Danke für nen Tipp.

Gute Nacht

        
Bezug
Kettenregel verkettet,implizit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mi 11.04.2012
Autor: steppenhahn

Hallo,



> Es soll gezeit werden, dass p(x,t) die Differential
> Gleichung [mm](\bruch{\partial}{\partial t}[/mm] +
> [mm]c(p)*\bruch{\partial}{\partial x})*p(x,t)[/mm] = 0 erfüllt!
>  
> wobei p(x,t) := p(x - [mm]\integral_{0}^{t}{c(p(y(t'),t')) dt})[/mm]

Mir ist noch etwas schleierhaft, wie die Funktion "p" auf der rechten Seite zu verstehen ist. Die hat ja nur ein Argument? Wenn ich diese Funktion einfach mal in "$s$" umbenenne, also

$p(x,t) := s(x - [mm] \int_{0}^{t} [/mm] c(p) dt$

Dann ist:

[mm] $\frac{\partial}{\partial t} [/mm] p(x,t) = s' * (-c(p))$,
[mm] $\frac{\partial}{\partial x} [/mm] p(x,t) = s' * 1$,

und damit die DGL von oben erfüllt:

[mm] $\left(\frac{\partial}{\partial t} + c(p)*\frac{\partial}{\partial x}\right) [/mm] p(x,t) = -c(p)*s' + c(p)*s' = 0.$


Schau nochmal nach, ob du die Definition von p(x,t) = ... richtig abgeschrieben hast.

Viele Grüße,
Stefan

Bezug
                
Bezug
Kettenregel verkettet,implizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Mi 16.05.2012
Autor: qsxqsx

Ja, sry wegen dem p(x,t). Es muss lauten:

Die Lösung p(x,t) ist geben als p(x,t) = p(x - [mm] \integral_{0}^{t}{c(p(y(t'),t')) dt},0) [/mm]

Danke für deine Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]