matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKettenregel und Produktregel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Kettenregel und Produktregel
Kettenregel und Produktregel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel und Produktregel: Frage
Status: (Frage) beantwortet Status 
Datum: 19:56 Do 16.12.2004
Autor: firegirl1124

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe wieder einmal ein Haufen Mathe-Hausaufgaben gemacht.
Und brauch mal Hilfe....

Meine Aufgabe: Differenzieren Sie mithilfe der Ketten- und Produktregel!

a) f(x)=x(x+1)  ^{4}
b) f(x)=(5x-2) * (3x+2) ^{8}

Ich bin irgendwie durch einander. Was muss ich nun zuerst machen.

Bei a) habe ich so angefangen f'(x)=4x(x+a) ^{3} ist das richtig?

Hoffe auch schnelle Antwort!

MfG
Fire



        
Bezug
Kettenregel und Produktregel: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Do 16.12.2004
Autor: kannnichtalles

Also , die Kettenregel kannst du mit dieser Formel bestimmen: u'(v(x))+v'(x)
Die Produktregel mit dieser: u'(x)*v(x)+u(x)*v'(x)
Wendest du das auf deine beiden Aufgaben an, bekommst folgende ungefähre Ergebnisse raus, die du dann aber eventuell selber vereinfachen kannst:

a)4x(x+1)³+1 [mm] b)5(3x+2)^8+(5x-2)(8(3x+2)^7) [/mm]

hoffe ich konnte dir etwas helfen.

Bezug
        
Bezug
Kettenregel und Produktregel: Mitteilung = falsch
Status: (Antwort) fertig Status 
Datum: 20:28 Do 16.12.2004
Autor: Disap

Meine Güte, die Kettenregel ist nicht u' + v', sondern u' * v'


> Meine Aufgabe: Differenzieren Sie mithilfe der Ketten- und
> Produktregel!
>  
> a) f(x)=x(x+1)  ^{4}

> Bei a) habe ich so angefangen f'(x)=4x(x+a) ^{3} ist das
> richtig?

Nein....
unsere funktionsgleichung:

[mm] f(x)=x(x+1)^{4} [/mm]

das ^4 ist die äußere Ableitung, nennen wir sie g(x)
das  (x+1) unser h(x)
Da dies eine Verkettung ist, müssen wir das ableiten mit h'(x)*g'(x)

=>  4 * 1 [mm] (x+1)^{3} [/mm]
Die +1 in der Klammer bleibt bestehen! Auf Grund dieser Verkettung

das h'(x) und g'(x) ist theoretisch das u' und das v' strich, aber das würde ich gerne bei der Produktregel anwenden, denn diese besagt:

u' * v + v' *u

u ist unser x
und v ist unser [mm] (x+1)^{4} [/mm]
v' haben wir ja schon ermittelt: [mm] 4(x+1)^{3} [/mm]
u' = 1

Daraus folgt das Ergebnis für Aufgabe a:
[mm] 1*(x+1)^{4} [/mm]  + [mm] x*4(x+1)^{3} [/mm]

Bezug
        
Bezug
Kettenregel und Produktregel: Aufgabe B - Lösung
Status: (Antwort) fertig Status 
Datum: 21:02 Do 16.12.2004
Autor: Disap

(5x-2) * [mm] (3x+2)^{8} [/mm]  ist unsere Funktion

ich würde vorschlagen, wir betrachten wieder einen teil
(5x-2) = u
(3x+2 [mm] )^{8} [/mm] =v
5 = u'

v' = 8 * 3 [mm] (3x+2)^{7} [/mm]

Daraus folgt:
f'(x) = [mm] 5(3x+2)^{8} [/mm] + [mm] 24(3x+2)^{7}*(5x-2) [/mm]

Natürlich kann man durch Basteln den Term noch vereinfachen, genau wie bei Aufgabe a
Hier würde herauskommen: (3x + [mm] 2)^{7}*(135x [/mm] - 38), ist jedoch das selbe

Liebe Grüße Disap



(Edit: Die Farben/Fettmarkierungen sind der allergrößte Mist. Entweder nicht benutzerfreundlich oder sie funktionieren nicht so super)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]