Kettenregel an Stelle auswert. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:13 Sa 03.07.2010 | Autor: | Rutzel |
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo,
man möchte
$\left.\frac{\partial f(a,u(x),...)}{\partial x}\right|_{u(x)=b}$
berechnen.
$\left.\frac{\partial f(a,u(x),...)}{\partial x}\right|_{u(x)=b} = \left.\frac{\partial f(a,u(x),...)}{\partial u(x)} \frac{\partial u(x)}{\partial x}\right|_{u(x)=b} = u'(b) \left.\frac{\partial f(a,u(x),...)}{\partial u(x)}\right|_{u(x)=b}$
Wie kann man denn zeigen, dass
$\left.\frac{\partial f(a,u(x),...)}{\partial u(x)}\right|_{u(x)=b} = \frac{\partial f(a,b,...)}{\partial b}$
gilt? Eigentlich ist es ja offensichtlich, da man ja nur nach der zweiten Variable ableiten will und dann ein b einsetzen soll. Genau dies passiert ja auf beiden Seiten des Gleichheitszeichen.
Nur wie zeigt das der Mathematiker korrekt?
Gruß,
Rutzel
|
|
|
|
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Huhu,
die Gleichheit brauchst du nicht zu zeigen, da du formal ja nur eine Variablensubstitution $u(x) = b$ durchgeführt hast.
Denn bei der Kettenregel bedeutet ja
\frac{\partial f(a,u(x),...)}{\partial u(x)}
nichts anderes als: "Wir leiten die Funktion f an der Stelle u(x) ab".
Ob wir da nun b oder u(x) für die Stelle schreiben, ist egal, da ja $u(x) = b$ gilt.
Allerdings hast du einen anderen Fehler gemacht und zwar:
> $\left.\frac{\partial f(a,u(x),...)}{\partial u(x)} \frac{\partial u(x)}{\partial x}\right|_{u(x)=b} = u'(b) \left.\frac{\partial f(a,u(x),...)}{\partial u(x)}\right|_{u(x)=b}$
Erstmal ist $\frac{\partial u(x)}{\partial x} = u'(x)$.
Nun soll ja gelten $u(x) = b$. Lassen wir das x mal konkret werden und nennen es x_b, also gilt $u(x_b) = b$.
Nun gilt ja:
$\left.\frac{\partial f(a,u(x),...)}{\partial u(x)} \frac{\partial u(x)}{\partial x}\right|_{u(x)=b} = \frac{\partial f(a,u(x),...)}{\partial u(x)} \frac{\partial u(x)}{\partial x}(x_b) = u'(x_b) * \frac{\partial f(a,b,...)}{\partial b}$
Und im Allgemeinen gilt eben NICHT $u'(x_b) = u'(b)$.
Wenn mans ganz genau sieht, müsste u'(b) nichteinmal definiert sein.
Ich hoffe das Problem ist klargeworden
MFG,
Gono.
|
|
|
|