matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationKettenregel, Nabla
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Kettenregel, Nabla
Kettenregel, Nabla < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel, Nabla: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Do 05.08.2010
Autor: waruna

Aufgabe
Im Skript habe ich gegeben:
[tex]\nabla f(\vec{R}(\vec{r})) = \nabla (\vec{R}(\vec{r}) \bruch{\partial}{\partial\vec{R}})f(\vec{R})[/tex]
mit dem Zusatz, dass R und
[tex] \bruch{\partial}{\partial\vec{R}}[/tex] sind miteinander Skalar veknüpft und R und [tex]\nabla[/tex] dyadisch.  

Warum aber?
Vielleicht wird mir jemand zeigen, wie nutzt man die Kettenregel in Komponentenschreibweise?


        
Bezug
Kettenregel, Nabla: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Do 05.08.2010
Autor: Kroni

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

wenn wir

$\nabla f(\vec{R}(\vec{r})) $ gegeben haben, dann koennen wir ja $f$ als Funktion von $R_1$, $R_2$, und $R_3$ auffassen, wenn wir im $\mathbbm{R}^3$ leben.

Dann sollte das Ergebnis ja, wenn $f: \mathbbm{R}^3 \rightarrow \mathbbm{R}$ das $\nabla$ auf $f$ angewandt wird, einen Vektor ergeben.

Jetzt gucken wir uns die $j$-te Komponente des Vektors an:

$[\nabla f(R_1(\vec{r}),R_2(\vec{r}),R_3(\vec{r}))]_j = \frac{\partial f}{\partial r_j} = \sum_i \frac{\partial f}{\partial R_i}\frac{\partial R_i}{\partial r_j}$

Das ist dann die Kettenregel, weil man $f$ erst nach den Komponenten von $R$ ableitet, und dann nach $r$. Die Summe kommt daher, weil ja jedes der $R_i$ von $\vec{r}$ abhaengt.

Das kann man nun umschreiben:


$ \frac{\partial f}{\partial r_j} = \left[ \sum_i \frac{\partial R_i}{\partial r_j} \cdot \frac{\partial}{\partial R_i}\right] f$

Und das muesste dann, wenn man das wieder in einen Vektor packen will, dein Ausdruck ergeben, denn das $\frac{\partial}{\partial \vec{R}$ entspricht dann dem $\frac{\partial}{\partial R_i}$ und dem $\frac{\partial R_i}{\partial r_j}$ wohl dem dyadischen Produkt aus $\nabla$ und $\vec{R}$, und wenn man das dann noch skalar mit dem $\frac{\partial}{\partial \vec{R}}$ multipliziert, kommt man in Komponentenschreibweise genau auf das obige.

LG

Kroni

Bezug
                
Bezug
Kettenregel, Nabla: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:24 So 08.08.2010
Autor: waruna

Danke, schon alles klar :).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]