matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKettenregel II
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Kettenregel II
Kettenregel II < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel II: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:12 Mi 22.07.2009
Autor: MaRaQ

Aufgabe
Sei g(u,v) := (sin(2u)+v , [mm] u+v^2 [/mm] , uv) und f(x,y,z) = 2xy - [mm] z^2 [/mm]
Berechnen Sie die Ableitungen [mm](f \circ g)_u [/mm] und [mm](f \circ g)_v[/mm]

Das ist relativ einfach direkt auszurechnen:

h(u,v) = (f [mm] \circ [/mm] g)(u,v) = f(g(u,v)) = (2sin 2u + 2v)(u + [mm] v^2) [/mm] - [mm] u^2v^2 [/mm]

[mm] h_u [/mm] = (4u + [mm] v^2)cos [/mm] 2u + 2(sin 2u + v) - [mm] 2uv^2 [/mm]
[mm] h_v [/mm] =  2(u + [mm] v^2) [/mm] + 4v(sin 2u + v) - 2u^2v

Nun könnte die Aufgabe aber auch lauten "mit Hilfe der Kettenregel", wär ja nicht das Erste mal, wenn in einer Klausur ein anderer als der einfache Weg gefragt wäre. ;-)

Kettenregel: [mm] J_{f \circ g}(x,y) [/mm] = [mm] J_f(g(x,y)) [/mm] * [mm] J_g(x,y) [/mm]

[mm] J_f [/mm] (x,y) = (2y , 2x , -2z) , [mm] J_g [/mm] (x,y) = [mm] \pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u} [/mm]

Und damit:
[mm] J_{f \circ g}(x,y) [/mm] = [mm] \vektor{2sin(2u) + 2v \\ 2u+2v^2 \\ -2uv} [/mm] * [mm] \pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u} [/mm]

Und wie multipliziert man das jetzt aus? Eine 3x3-Matrix würde der Formel an dieser Stelle deutlich besser zu Gesicht stehen...

        
Bezug
Kettenregel II: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Mi 22.07.2009
Autor: MathePower

Hallo MaRaQ,

> Sei g(u,v) := (sin(2u)+v , [mm]u+v^2[/mm] , uv) und f(x,y,z) = 2xy -
> [mm]z^2[/mm]
>  Berechnen Sie die Ableitungen [mm](f \circ g)_u[/mm] und [mm](f \circ g)_v[/mm]
>  
> Das ist relativ einfach direkt auszurechnen:
>
> h(u,v) = (f [mm]\circ[/mm] g)(u,v) = f(g(u,v)) = (2sin 2u + 2v)(u +
> [mm]v^2)[/mm] - [mm]u^2v^2[/mm]
>  
> [mm]h_u[/mm] = (4u + [mm]v^2)cos[/mm] 2u + 2(sin 2u + v) - [mm]2uv^2[/mm]


Hier muß die "4" vor der Klammer stehen:

[mm]h_{u} = \red{4}\left(u + v^{2}\right)\cos\left(2u\right) + 2\left( \ \sin\left(2u\right) + v \ \right) - 2uv^{2}[/mm]


>  [mm]h_v[/mm] =  2(u + [mm]v^2)[/mm] + 4v(sin 2u + v) - 2u^2v
>  
> Nun könnte die Aufgabe aber auch lauten "mit Hilfe der
> Kettenregel", wär ja nicht das Erste mal, wenn in einer
> Klausur ein anderer als der einfache Weg gefragt wäre.
> ;-)
>  
> Kettenregel: [mm]J_{f \circ g}(x,y)[/mm] = [mm]J_f(g(x,y))[/mm] * [mm]J_g(x,y)[/mm]
>  
> [mm]J_f[/mm] (x,y) = (2y , 2x , -2z) , [mm]J_g[/mm] (x,y) = [mm]\pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]
>  
> Und damit:
> [mm]J_{f \circ g}(x,y)[/mm] = [mm]\vektor{2sin(2u) + 2v \\ 2u+2v^2 \\ -2uv}[/mm]



> * [mm]\pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]


Doch wohl eher so:

[mm]J_{f \circ g}(x,y) = \vektor{ 2u+2v^2 \\ 2sin(2u) + 2v \\ -2uv}* \pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]


>  
> Und wie multipliziert man das jetzt aus? Eine 3x3-Matrix
> würde der Formel an dieser Stelle deutlich besser zu
> Gesicht stehen...


So, daß es von den Dimensionen her paßt:

[mm]J_{f \circ g}(x,y) = \vektor{ 2u+2v^2 & 2sin(2u) + 2v & -2uv}* \pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]


Gruß
MathePower

Bezug
                
Bezug
Kettenregel II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Mi 22.07.2009
Autor: MaRaQ


> Hallo MaRaQ,
>  
> > Sei g(u,v) := (sin(2u)+v , [mm]u+v^2[/mm] , uv) und f(x,y,z) = 2xy -
> > [mm]z^2[/mm]
>  >  Berechnen Sie die Ableitungen [mm](f \circ g)_u[/mm] und [mm](f \circ g)_v[/mm]
>  
> >  

> > Das ist relativ einfach direkt auszurechnen:
> >
> > h(u,v) = (f [mm]\circ[/mm] g)(u,v) = f(g(u,v)) = (2sin 2u + 2v)(u +
> > [mm]v^2)[/mm] - [mm]u^2v^2[/mm]
>  >  
> > [mm]h_u[/mm] = (4u + [mm]v^2)cos[/mm] 2u + 2(sin 2u + v) - [mm]2uv^2[/mm]
>  
>
> Hier muß die "4" vor der Klammer stehen:

Stimmt.

> [mm]h_{u} = \red{4}\left(u + v^{2}\right)\cos\left(2u\right) + 2\left( \ \sin\left(2u\right) + v \ \right) - 2uv^{2}[/mm]
>  
>
> >  [mm]h_v[/mm] =  2(u + [mm]v^2)[/mm] + 4v(sin 2u + v) - 2u^2v

>  >  
> > Nun könnte die Aufgabe aber auch lauten "mit Hilfe der
> > Kettenregel", wär ja nicht das Erste mal, wenn in einer
> > Klausur ein anderer als der einfache Weg gefragt wäre.
> > ;-)
>  >  
> > Kettenregel: [mm]J_{f \circ g}(x,y)[/mm] = [mm]J_f(g(x,y))[/mm] * [mm]J_g(x,y)[/mm]
>  >  
> > [mm]J_f[/mm] (x,y) = (2y , 2x , -2z) , [mm]J_g[/mm] (x,y) = [mm]\pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]
>  
> >  

> > Und damit:
> > [mm]J_{f \circ g}(x,y)[/mm] = [mm]\vektor{2sin(2u) + 2v \\ 2u+2v^2 \\ -2uv}[/mm]
>
>
>
> > * [mm]\pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]
>  
>
> Doch wohl eher so:
>  
> [mm]J_{f \circ g}(x,y) = \vektor{ 2u+2v^2 \\ 2sin(2u) + 2v \\ -2uv}* \pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]
>
>

Stimmt auch. ^^

> >  

> > Und wie multipliziert man das jetzt aus? Eine 3x3-Matrix
> > würde der Formel an dieser Stelle deutlich besser zu
> > Gesicht stehen...
>
>
> So, daß es von den Dimensionen her paßt:
>  
> [mm]J_{f \circ g}(x,y) = \vektor{ 2u+2v^2 & 2sin(2u) + 2v & -2uv}* \pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]
>
>
> Gruß
>  MathePower


Kann man den Vektor an der Stelle "einfach so" transponieren, nur damit die Dimensionen passen - oder steckt da noch was anderes dahinter?

Bezug
                        
Bezug
Kettenregel II: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 Mi 22.07.2009
Autor: MathePower

Hallo MaRaQ,

> > Hallo MaRaQ,
>  >  
> > > Sei g(u,v) := (sin(2u)+v , [mm]u+v^2[/mm] , uv) und f(x,y,z) = 2xy -
> > > [mm]z^2[/mm]
>  >  >  Berechnen Sie die Ableitungen [mm](f \circ g)_u[/mm] und [mm](f \circ g)_v[/mm]
>  
> >  

> > >  

> > > Das ist relativ einfach direkt auszurechnen:
> > >
> > > h(u,v) = (f [mm]\circ[/mm] g)(u,v) = f(g(u,v)) = (2sin 2u + 2v)(u +
> > > [mm]v^2)[/mm] - [mm]u^2v^2[/mm]
>  >  >  
> > > [mm]h_u[/mm] = (4u + [mm]v^2)cos[/mm] 2u + 2(sin 2u + v) - [mm]2uv^2[/mm]
>  >  
> >
> > Hier muß die "4" vor der Klammer stehen:
>  
> Stimmt.
>  
> > [mm]h_{u} = \red{4}\left(u + v^{2}\right)\cos\left(2u\right) + 2\left( \ \sin\left(2u\right) + v \ \right) - 2uv^{2}[/mm]
>  
> >  

> >
> > >  [mm]h_v[/mm] =  2(u + [mm]v^2)[/mm] + 4v(sin 2u + v) - 2u^2v

>  >  >  
> > > Nun könnte die Aufgabe aber auch lauten "mit Hilfe der
> > > Kettenregel", wär ja nicht das Erste mal, wenn in einer
> > > Klausur ein anderer als der einfache Weg gefragt wäre.
> > > ;-)
>  >  >  
> > > Kettenregel: [mm]J_{f \circ g}(x,y)[/mm] = [mm]J_f(g(x,y))[/mm] * [mm]J_g(x,y)[/mm]
>  >  >  
> > > [mm]J_f[/mm] (x,y) = (2y , 2x , -2z) , [mm]J_g[/mm] (x,y) = [mm]\pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]
>  
> >  

> > >  

> > > Und damit:
> > > [mm]J_{f \circ g}(x,y)[/mm] = [mm]\vektor{2sin(2u) + 2v \\ 2u+2v^2 \\ -2uv}[/mm]
> >
> >
> >
> > > * [mm]\pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]
>  >  
> >
> > Doch wohl eher so:
>  >  
> > [mm]J_{f \circ g}(x,y) = \vektor{ 2u+2v^2 \\ 2sin(2u) + 2v \\ -2uv}* \pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]
> >
> >
>
> Stimmt auch. ^^
>  
> > >  

> > > Und wie multipliziert man das jetzt aus? Eine 3x3-Matrix
> > > würde der Formel an dieser Stelle deutlich besser zu
> > > Gesicht stehen...
> >
> >
> > So, daß es von den Dimensionen her paßt:
>  >  
> > [mm]J_{f \circ g}(x,y) = \vektor{ 2u+2v^2 & 2sin(2u) + 2v & -2uv}* \pmat{2cos(2u) & 1 \\ 1 & 2v \\ v & u}[/mm]
> >
> >
> > Gruß
>  >  MathePower
>
>
> Kann man den Vektor an der Stelle "einfach so"
> transponieren, nur damit die Dimensionen passen - oder
> steckt da noch was anderes dahinter?


Mit Hilfe der []verallgemeinerten Kettenregel sieht man das.

Betrachte hier [mm]f\left(u,v\right)=f\left( \ x\left(u,v\right), \ y\left(u,v\right), \ z\left(u,v\right) \ \right)[/mm]

Dann ist

[mm]f_{u}=f_{x}*x_{u}+f_{y}*y_{u}+f_{z}*z_{u}[/mm]

[mm]f_{v}=f_{x}*x_{v}+f_{y}*y_{v}+f_{z}*z_{v}[/mm]

Das läßt sich hier etwas kompakter schreiben:

[mm]\pmat{f_{u} \\ f_{v} }=\pmat{f_{x} & f_{y} & f_{z}}*\pmat{x_{u} & x_{v} \\ y_{u} & y_{v} \\ z_{u} & z_{v}}=\left(J_{f}\left( \ x\left(u,v\right), \ y\left(u,v\right), \ z\left(u,v\right) \ \right)\right)^{T} \* J_{g}\left(u,v\right)[/mm]


Gruß
MathePower

Bezug
                                
Bezug
Kettenregel II: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Mi 22.07.2009
Autor: MaRaQ

[mm] \summe_{i=1}^{1000} [/mm] Danke. ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]