matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKettenregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Kettenregel
Kettenregel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:16 Sa 26.06.2010
Autor: Igor1

Aufgabe
Es sei D:= {(x,y) [mm] \in \IR^{2}:x>0 [/mm] und y>0} und [mm] E:={(u,v,w)\in \IR^{3}: w>0}. [/mm]
Wir definieren die Funktion f: D [mm] \to \IR^{3} [/mm] und g: E [mm] \to \IR [/mm] durch
f(x,y):=(ln(xy) , [mm] cos(x^{2}+y), e^{x}) [/mm] und g(u,v,w):= [mm] e^{u}+vw+ln(w). [/mm]
Zeigen Sie , dass [mm] h:=g\circ [/mm] f differenzierbar ist und berechnen Sie die Ableitung
(i) nach Kettenregel
(ii) direkt durch Ableiten von h=h(x,y)

Hallo,

zuerst(nur so am Rande): ich nehme an, dass (i) und (ii) das gleiche
Ergebnis liefern. (Stimmt das ?)



Wie ich bei (i) vorgegangen bin :
Das Zwischenziel ist Dg(f(x,y)) zu berechnen.
Ich habe zuerst  Dg bestimmt und dann bin ich mir nicht sicher  -
nachdem ich Dg (1x3 Vektor) ausgerechnet habe, wollte ich in jede Komponente des Vektors  f(x,y) einsetzen ( so ist Jacobi-Matrix definiert).
Die erste Komponente hängt von u ab. Heißt das , dass ich für u die erste
Komponente , also ln(xy), der Funktion f ,für v die zweite Komponente von f und für w die dritte Komponente von f einsetzen muss?

Gruß
Igor




        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Sa 26.06.2010
Autor: MathePower

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo  Igor1,

> Es sei D:= {(x,y) [mm]\in \IR^{2}:x>0[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

und y>0} und

> [mm]E:={(u,v,w)\in \IR^{3}: w>0}.[/mm]
>  Wir definieren die Funktion
> f: D [mm]\to \IR^{3}[/mm] und g: E [mm]\to \IR[/mm] durch
>  f(x,y):=(ln(xy) , [mm]cos(x^{2}+y), e^{x})[/mm] und g(u,v,w):=
> [mm]e^{u}+vw+ln(w).[/mm]
>  Zeigen Sie , dass [mm]h:=g\circ[/mm] f differenzierbar ist und
> berechnen Sie die Ableitung
>  (i) nach Kettenregel
>  (ii) direkt durch Ableiten von h=h(x,y)
>  Hallo,
>  
> zuerst(nur so am Rande): ich nehme an, dass (i) und (ii)
> das gleiche
> Ergebnis liefern. (Stimmt das ?)
>  
>
>
> Wie ich bei (i) vorgegangen bin :
>  Das Zwischenziel ist Dg(f(x,y)) zu berechnen.
>  Ich habe zuerst  Dg bestimmt und dann bin ich mir nicht
> sicher  -
>  nachdem ich Dg (1x3 Vektor) ausgerechnet habe, wollte ich
> in jede Komponente des Vektors  f(x,y) einsetzen ( so ist
> Jacobi-Matrix definiert).
>  Die erste Komponente hängt von u ab. Heißt das , dass
> ich für u die erste
>  Komponente , also ln(xy), der Funktion f ,für v die
> zweite Komponente von f und für w die dritte Komponente
> von f einsetzen muss?


Ja, der (1,3)-Vektor ist aber nur ein Teil der Kettenregel.


>  
> Gruß
>  Igor
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]