matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungKettenregel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Kettenregel
Kettenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 08.11.2007
Autor: espritgirl

Hallo,

bei uns wurde heute die Kettenregel eingeführt und ich wollte einfach mal ein paar Aufgaben überprüfen lassen:

f(x)=sin(-x)
f`(x)=cos(-x)

f(x)=28*cos(2x+5)
f`(x)=2*(8*(-sin(2x+5)))

[mm] f(x)=9*sinx^{2.5} [/mm]
=> was macht man hier?

[mm] f(x)=(cosx)^{2.5} [/mm]
=> was machst man hier?


Liebe Grüße,

Sarah :-)

        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Do 08.11.2007
Autor: Teufel

Hi!

f(x)=u(v(x))
f'(x)=u'(v(x))*v'(x)

f(x)=sin(-x)

u(v(x))=sin(-x)
v(x)=-x

u'(v(x))=cos(-x)
v'(x)=-1

f'(x)=-cos(-x)

Oder da gilt cos(x)=cos(-x), kannst du auch f'(x)=-cos(x) draus machen, ist aber nicht nötig!

Das 2. müsste f'(x)=28*(-sin(2x+5))*2=-56sin(2x+5) heißen.


3)
Geht ja eigentlich fast wie die davor!
Äußere Funktion abgeleitet ist [mm] cosx^{2,5}, [/mm] innere Funktion abgeleitet ist [mm] (x^{2,5})'=2,5x^{1,5} [/mm]

=> [mm] f'(x)=9*cosx^{2,5}*2,5x^{1,5} [/mm]

4)
Hier ist [mm] x^{2,5} [/mm] sie äußere Funktion und cosx die Innere!


Wenn du noch ein paar Aufgaben dazu machst, kannst du es sicher bald :)

Bezug
                
Bezug
Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Do 08.11.2007
Autor: espritgirl

Hallo Teufel,

Danke für deine Korrektur, leider habe ich mich dreimal verschrieben *grr*

d) f(x)=8*cos(2x+5)
  f`(x)=2*(8*(-sin(2x+5)))

[mm] f(x)=9*sinx^{2} [/mm]
---> woher weiß ich bei so einer Aufgabe, was innere und äußere Funktion ist? Ich habe das in der Schule nicht verstanden. Es wurde nur gesagt, was man als erstes in den TR tippt sei die innere.


[mm] f(x)=\wurzel{-x} [/mm]
[mm] f`(x)=\bruch{1}{2*\wurzel{-x}} [/mm]


[mm] f(x)=\wurzel{x^{2}+1} [/mm]
[mm] f`(x)=\bruch{2x}{2*\wurzel{x^{2}+1}} [/mm]

[mm] f(x)=(cosx)^{2} [/mm]
f`(x)=sinx*2*cosx


Aufgefallen ist mir, dass du eine andere Schreibweise hast, als wir.

Wir haben die innere Fkt = z gesetzt und dann anschließend die innere mal die äußere Funktion gerechnet.



Sarah

Bezug
                        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Do 08.11.2007
Autor: Steffi21

Hallo,

1. Ableitung korrekt, du könntst noch schreiben -16sin(2x+5)
2. Ableitung korrekt
3. Ableitung korrekt
4. Ableitung, dir fehlt das Vorzeichen -, die Ableitung von cos(x) ist -sin(x)

cos(2x+5) möchtest du diesen Term berechnen, zuerst 2x+5, davon dann den Cosinus,

[mm] \wurzel{x^{2}+1} [/mm] möchtest du diesen Term berechne, zuerst [mm] x^{2}+1, [/mm] davon dann die Wurzel

[mm] sin(x^{2}) [/mm] möchtest du diesen Term berechnen, zuerst [mm] x^{2}, [/mm] davon dann den Sinus

die Bezeichnungen der Funktionen ist eigentlich egal, ob du sie u und v nennst ober a und b ist eigentlich egal, benutze deine in der Schule eingeführte Bezeichnung,

allgemein hast du es ja schon gesagt, Ableitung innere Funktion mal Ableitung äußere Funktion, ebenso kannst du sagen, Ableitung äußere Funktion mal Ableitung innere Funktion, die Multiplikation ist kommutativ,

Steffi




Bezug
        
Bezug
Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Do 08.11.2007
Autor: jan_lde

Hallo!

Teufel hat recht, ich wollte dir nur noch einen Tipp geben:

Immer aufschreiben was u(x) und was v(x) ist und dann einfach  einsetzen. Das macht die ganze Sache sehr übersichtlich und mit etwas Übung kann man das irgendwann weglassen.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]