matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungKettenregel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Kettenregel
Kettenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Mi 11.04.2007
Autor: Sternchen0707

Gegeben seien die Funktionen w, v und u mit w(x) = -2x+1 , v(x) = sinx  und  u(x) = x² ,  jeweils mit dem Definitionsbereich R.
Gib die Verkettung der drei Funktionen an.

1) f(x) = w(v(u(x)))
2) f(x) = w(u(v(x)))

Wir hatten die kettenregel bisher nur mit 2 gleichungen und ich weiß jetzt auch nicht wie ich u, v oder w alleinstehen rausbekommen soll, also ohne (x)

Wäre nett wenn mir jemand helfen könnte... Danke

        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mi 11.04.2007
Autor: DerD85

zu 1.)
u(x) ist ja gegeben mit [mm] u(x)=x^2. [/mm]
nun brauchen wir v(u(x)).
v(x) ist gegeben durch v(x)=sin x - somit ist v(u(x))=sin [mm] (x^2) [/mm]
zuletzt noch w(v(u(x))):
w(x)=-2x+1 daraus folgt w(v(u(x)))=-2(sin [mm] (x^2)) [/mm] +1

2.) läuft analog

lg

dennis

Bezug
                
Bezug
Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Mi 11.04.2007
Autor: Sternchen0707

ist das richtig wenn ich da jetzt genau das gleiche raushab?

danke...

Bezug
        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Mi 11.04.2007
Autor: Mathehelfer

Hi!

Aufgabe 2 hat eine etwas andere Lösung als Aufg. 1:
2) [mm]f(x)=w(u(v(x)))[/mm]
[mm]u(v(x))=(\sin(x))^2=\sin^2(x)[/mm]
[mm]\Rightarrow f(x)=w(\sin^2(x))=-2(\sin^2(x))+1[/mm]

Bedenke: [mm] (\sin(x))^2 \not= \sin(x^2) [/mm]

Grüße,
Mathehelfer

Bezug
                
Bezug
Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mi 11.04.2007
Autor: Sternchen0707

Danke für die Antworten, sie haben mir auch alle weitergeholfen...

ich habe jetzt leider noch ein Problem...



--> Zerlege die angegebene Funktion f in Teilfunktionen w, v und u , so dass gilt : f(x) = u(v(w(x)))

a) f(x) =  1 / (x³- [mm] 2x)^4 [/mm]



Bezug
                        
Bezug
Kettenregel: Tipp
Status: (Antwort) fertig Status 
Datum: 16:23 Mi 11.04.2007
Autor: Roadrunner

Hallo Sternchen!


Wie wäre es mit  folgenden Teilfunktionen (die Zuordnung überlasse ich dann mal Dir):

[mm] $g_1(x) [/mm] \ = \ [mm] x^4$ [/mm]

[mm] $g_2(x) [/mm] \ = \ [mm] \bruch{1}{x}$ [/mm]

[mm] $g_3(x) [/mm] \ = \ [mm] x^3-2x$ [/mm]


Gruß vom
Roadrunner


Bezug
                                
Bezug
Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Mi 11.04.2007
Autor: Sternchen0707

danke für die hilfe... ich verstehs leider trotzdem nich


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]