matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenKettenregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Kettenregel
Kettenregel < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel: Potenz
Status: (Frage) beantwortet Status 
Datum: 17:07 Fr 14.11.2014
Autor: b.reis

Aufgabe
Bestimmen Sie den Term der ersten Ableitung

[mm] f(x)=2x(4-x)^3 [/mm]

Hallo,


Bei dieser Aufgabe habe ich die Kettenregel angewandt.

Ich bin mir aber nicht sicher was ich nachdifferenzieren muss und ob ich mehrmals nachdifferenzieren muss.

Zuerst leite ich 2x ab zu --> [mm] 2(4-x)^3 [/mm] und dann die Klammer ---> [mm] 3*(4-x)^2 [/mm]

---> [mm] 2(4-x)^3 [/mm] * [mm] 3*(4-x)^2 [/mm]

Das Ergebnis stimmt aber nicht.


Danke

benni

        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Fr 14.11.2014
Autor: DieAcht

Hallo Benni,


Du hast Unfug gemacht. Du willst

      [mm] $f(x)=2x(4-x)^3$ [/mm]

ableiten. Die Funktion besteht aus zwei Produkten, so dass
wir die Produktregel

      [mm] $f(x)=u(x)*v(x)\$ [/mm]

      [mm] $\Rightarrow [/mm] f'(x)=u'(x)*v(x)+u(x)*v'(x)$

benutzen wollen. Mit

      $u:=2x [mm] \text{ bzw. }v:=(4-x)^3$ [/mm]

erhalten wir

      [mm] $u'=\ldots\text{ bzw. }v'=\ldots$ [/mm] (It's your turn!).

(Bei [mm] $v\$ [/mm] benötigen wir die Kettenregel

      [mm] $f(x)=g(h(x))\$ [/mm]

      [mm] $\Rightarrow [/mm] f'(x)=g'(h(x))*h'(x)$.)

Reicht das?


Gruß
DieAcht

Bezug
        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Fr 14.11.2014
Autor: DieAcht

Hallo nochmal,


Ich habe nun doch noch verstanden was du gemacht hast.

> Zuerst leite ich 2x ab zu --> [mm]2(4-x)^3[/mm] und dann die Klammer
> ---> [mm]3*(4-x)^2[/mm]
>  
> ---> [mm]2(4-x)^3[/mm] * [mm]3*(4-x)^2[/mm]

Du hast vergessen, dass du die Produktregel benutzt und somit
"in der Mitte" eine Addition sein muss. Außerdem hast du die
innere Ableitung vergessen. Richtig ist:

      [mm] 2(4-x)^3\green{+}\red{2x*}3*(4-x)^2*\red{(4-x)'}. [/mm]

Jetzt wieder du!

(Lies dir trotzdem nochmal meine andere Antwort durch!)


Gruß
DieAcht

Bezug
                
Bezug
Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Fr 14.11.2014
Autor: b.reis

Hallo,

Die Aufgabe konnte ich lösen und bin sehr dankbar für deine schnelle Antwort.

[mm] f(x)=2x*(4-x)^3 [/mm] f'(x)= [mm] 2*(4-x)^3+2x* 3(4-x)^2*-1 [/mm]

[mm] =2*(4-x)^3-2x*3(4-x)2 [/mm] Jetzt klammere ich aus --> [mm] (4-x)^2*((4-x)*2-6x) [/mm]
[mm] =(4-x)^2(8-2x-6x)=(4-x)^2(1-x)*8 [/mm]

Danke

benni

Bezug
                        
Bezug
Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:14 Fr 14.11.2014
Autor: DieAcht


> [mm]f(x)=2x*(4-x)^3[/mm] f'(x)= [mm]2*(4-x)^3+2x* 3(4-x)^2*-1[/mm]

Es fehlen Klammern! Richtig:

      [mm] f'(x)=2*(4-x)^3+2x*3(4-x)^2*(-1). [/mm]

> [mm]=2*(4-x)^3-2x*3(4-x)\red{2}[/mm]

Tippfehler?

> Jetzt klammere ich aus -->
> [mm](4-x)^2*((4-x)*2-6x)[/mm]
> [mm]=(4-x)^2(8-2x-6x)=(4-x)^2(1-x)*8[/mm]

Richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]