matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKettenbruch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Kettenbruch
Kettenbruch < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenbruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:16 Sa 14.01.2006
Autor: ShinySmile

Hy...also ich hab total  die probleme mit kettenbrüchen...

ich verstehe zwar das Prinzip, doch man erhält ja dann immer so Brüche und da gibt es einen Trick, den nenner wegzubekommen..in dem man mit 1 multipliziert, aber woher weiß ich was das für ein Bruch sein muss....
gibts da irgend einen Trick, woher man das weiß....?

Es wäre nett wenn mir jemand helfen könnte...
Ach und wenn es geht bitte nicht an dem Beispiel wurzel{2} erklären..weil das hatte ich verstanden.....

Danke schön.....

        
Bezug
Kettenbruch: Tipp
Status: (Antwort) fertig Status 
Datum: 11:36 Sa 14.01.2006
Autor: Zwerglein

Hi, Shiny,

> Hy...also ich hab total  die probleme mit kettenbrüchen...
>  
> ich verstehe zwar das Prinzip, doch man erhält ja dann
> immer so Brüche und da gibt es einen Trick, den nenner
> wegzubekommen..in dem man mit 1 multipliziert, aber woher
> weiß ich was das für ein Bruch sein muss....
>  gibts da irgend einen Trick, woher man das weiß....?

Also: Ich glaube, Du musst die Frage präziser stellen, am besten mit einem Beispiel.
Aber einen kleinen Tipp geb' ich Dir schon mal:
[]http://de.wikipedia.org/wiki/Kettenbruch

mfG!
Zwerglein

Bezug
                
Bezug
Kettenbruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Sa 14.01.2006
Autor: ShinySmile

Also man nehme z.B. Wurzel aus 3

[mm] \alpha [/mm] = [mm] \alpha_{1} [/mm] = [mm] \wurzel{3} [/mm]
[mm] \alpha_{1} [/mm] = [mm] [\wurzel{3}] [/mm] + [mm] \bruch{1}{\alpha_{2}} [/mm]
=> [mm] \bruch{1}{\alpha_{2}}= \wurzel{3} [/mm] - 1
[mm] \alpha_{2}= \bruch{1}{\alpha_{1}-[\alpha_{1}]}= [/mm]
[mm] \bruch{1}{\wurzel{3}-1} [/mm] * 1
und genau bei der 1 liegt mein Problem....
Ich muss den Bruc mit 1 multiplizieren damit der Nenner wegfällt.....gibt es da irgend einen Trick....wie man immer den Nenner wegfallen lassen kann....und das nicht nur bei [mm] \wurzel{3}.... [/mm]

Es wäre nett wenn mir jemand helfen könnte.....

Danke

Bezug
                        
Bezug
Kettenbruch: versteh die Frage noch nicht
Status: (Antwort) fertig Status 
Datum: 16:10 Sa 14.01.2006
Autor: Bastiane

Hallo!

Also ich verstehe deine Frage immer noch nicht. Was ist denn die Aufgabenstellung???

> Also man nehme z.B. Wurzel aus 3
>  
> [mm]\alpha[/mm] = [mm]\alpha_{1}[/mm] = [mm]\wurzel{3}[/mm]
>  [mm]\alpha_{1}[/mm] = [mm][\wurzel{3}][/mm] + [mm]\bruch{1}{\alpha_{2}}[/mm]
>  => [mm]\bruch{1}{\alpha_{2}}= \wurzel{3}[/mm] - 1

>  [mm]\alpha_{2}= \bruch{1}{\alpha_{1}-[\alpha_{1}]}=[/mm]
>  
> [mm]\bruch{1}{\wurzel{3}-1}[/mm] * 1
>  und genau bei der 1 liegt mein Problem....
>  Ich muss den Bruc mit 1 multiplizieren damit der Nenner
> wegfällt.....gibt es da irgend einen Trick....wie man immer
> den Nenner wegfallen lassen kann....und das nicht nur bei
> [mm]\wurzel{3}....[/mm]

Ich verstehe nicht, wieso der Nenner wegfallen soll, wenn man mit 1 multipliziert!? Aber du kannst mit [mm] (\wurzel{3}+1) [/mm] erweitern. Dann steht im Nenner: [mm] (\wurzel{3}-1)(\wurzel{3}+1)=3-1=2. [/mm] Allerdings hast du dann im Zähler eine Wurzel stehen...

Viele Grüße
Bastiane
[cap]


Bezug
                        
Bezug
Kettenbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Sa 14.01.2006
Autor: leduart

Hallo shiney smile
Also mit deinen [mm] \alpha [/mm] s kann ich auch nix anfangen. Aber Bastianes Ansatz ist der richtige:
[mm] (\wurzel{3}-1)*(\wurzel{3}+1)=2 [/mm]
daraus folgt :
[mm] \wurzel{3}=1+\bruch{2}{1+\green{\wurzel{3}}} [/mm]
für die grüne Wurzel setzest du jetzt das Ergebnis ein also:
[mm] \green{\wurzel{3}}=1+\bruch{2}{1+\green{\wurzel{3}}} [/mm]
Damit erhältst du :
[mm] \wurzel{3}=1+\bruch{2}{1+1+\bruch{2}{1+\green{\wurzel{3}}}} [/mm]
jetzt noch durch 2 kürzen:
[mm] \wurzel{3}=1+\bruch{1}{1+\bruch{1}{1+\green{\wurzel{3}}}} [/mm]
so, jetzt wieder für die grüne wurzel das ganze einsetzen und du bist gleich 2 Stufen weiter.
jetzt sieht man aber auch schon, wie das weiterläuft und kann Pünktchen machen. für die  letzte grüne [mm] \wurzel{3} [/mm] setzt man dann nen Näherungswert, z.Bsp 2 ein, und hat insgesamt , wenn man das von hinten anfangend ausrechnet eine bessere Näherung für [mm] \wurzel{3}. [/mm]
(ich seh allerdings hier nirgends nen "Trick mit ner 1")
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]