matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKernzerfallskinetik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Kernzerfallskinetik
Kernzerfallskinetik < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kernzerfallskinetik: Logarithmusproblem
Status: (Frage) beantwortet Status 
Datum: 20:43 Mo 28.03.2005
Autor: Hansw

Hallo; ich will die Kernzerfallskinetik zumindest ansatzweise herleiten, bekomms aber nicht hin.

Gegeben habe ich ln (No/Nt)=  [mm] \lambda [/mm] *t

herausbekommen soll ich

Nt = Noe  hoch   - ( [mm] \lambda [/mm] *t)



ok, durch umstellen erhalte ich -ln(Nt/No) = [mm] \lambda [/mm] *t

, daraus wiederum - [mm] \lambda [/mm] *t = ln(Nt/No)

daraus - [mm] \lambda [/mm] *t  * ln No = ln Nt.

Bitte korrigiert mich, falls da was nicht stimmen sollte.


spätestens hier bin ich jetzt unsicher....bin nicht wirklich fit in mathe...


ergäbe entloarithmieren jetzt


Nte hoch  [mm] -(\lambda [/mm] *t) = No?



könnte mir bitte jemand weiterhelfen?

Markus.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kernzerfallskinetik: Logarithmus falsch umgeformt!
Status: (Antwort) fertig Status 
Datum: 21:09 Mo 28.03.2005
Autor: Loddar

Hallo Markus,

auch Dir hier ein herzliches [willkommenmr] !!


> Gegeben habe ich ln (No/Nt)=  [mm]\lambda[/mm] *t
>  
> herausbekommen soll ich
> Nt = Noe  hoch   - ( [mm]\lambda[/mm] *t)
>
> ok, durch umstellen erhalte ich -ln(Nt/No) = [mm]\lambda[/mm] *t
>  
> , daraus wiederum - [mm]\lambda[/mm] *t = ln(Nt/No)

[daumenhoch] Bis hierher ist alles ok ...



> daraus - [mm]\lambda[/mm] *t  * ln No = ln Nt

Hier wird's (bzw. ist es schon) falsch!

Denn im allgemeinen gilt:  [mm] $\log_b \left( \bruch{x}{y} \right) [/mm] \ [mm] \red{\not=} [/mm] \ [mm] \bruch{\log_b(x)}{\log_b(y)}$ [/mm]


Also mußt Du bereits hier "entlogarithmieren", sprich: auf beiden Seiten der Gleichung die e-Funktion anwenden:

[mm] $\ln\left(\bruch{N_t}{N_0}\right) [/mm] \ = \ - [mm] \lambda [/mm] * t$

[mm] $\gdw$ [/mm]

[mm] $e^{\ln\left(\bruch{N_t}{N_0}\right)} [/mm] \ = \ [mm] \bruch{N_t}{N_0} [/mm] \ = \ [mm] e^{- \lambda * t}$ [/mm]


Nun ist ja nur noch ein Schritt, um Deine Formel für [mm] $N_t$ [/mm] zu erhalten.

Alle Klarheiten beseitigt?

Gruß
Loddar


Bezug
                
Bezug
Kernzerfallskinetik: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 Mo 28.03.2005
Autor: Hansw

danke. hat mir sehr geholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]