matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKerne und Urbilder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Kerne und Urbilder
Kerne und Urbilder < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kerne und Urbilder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Do 22.07.2010
Autor: Bananenmann86

Aufgabe
Es seien die Matrix

A := [mm] \pmat{ 1 & -1 & 1 & 0 & 1 \\ -1 & -1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & -1 \\ -1 & 0 & 1 & -1 & 0 } \in \mathbb{Z}_{3}^{4x5} [/mm]

sowie die Vektoren [mm] b_{1} [/mm] := (0,0,1,0), [mm] b_{2} [/mm] := (1,0,1,1) [mm] \in \mathbb{Z}_{3}^4 [/mm] gegeben. Es sei [mm] \varphi_{A} [/mm] die lineare Abbildung [mm] \varphi_{A} [/mm] : [mm] \mathbb{Z}_{3}^5 \rightarrow \mathbb{Z}_{3}^4, [/mm] x [mm] \mapsto [/mm] Ax.

Bestimmen Sie [mm] Kern(\varphi_{A}), \varphi_{A}^{-1} ({b_{1}}), \varphi_{A}^{-1} ({b_{2}}) [/mm] und geben Sie [mm] \left| Kern(\varphi_{A}) \right|, \left| \varphi_{A}^(-1) ({b_{1}}) \right|, \left| \varphi_{A}^(-1) ({b_{2}}) \right| [/mm] an.

Hallo,

ich bins mal wieder mit einer wahrscheinlich vollkommen trivialen Frage, allerdings blicke ich gerade nicht dahinter.

Um [mm] Kern(\varphi_{A}) [/mm] auszurechnen, löse ich das homogene Gleichungssystem A und erhalte

[mm] \pmat{ 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 } [/mm]

und somit

{(r-s, t-r-s, r, s, t) | r,s,t [mm] \in \mathbb{Z}_3 [/mm] }

Jetzt setz ich jeweils r, s und t 1 und erhalte als Gleichung

{r(1,-1,1,0,0) + s(-1,-1,0,1,0) + t(0,1,0,0,1) | r,s,t [mm] \in \mathbb{Z}_3 [/mm] }

Nun kommt das Problem.. In der Lösung steht im nächsten Schritt als Lösungsmenge

{(1,-1,1,0,0),(1,1,0,-1,0),(0,1,0,0,1)}

und genau hier setzt es aus.. Folgeaufgaben bekomme ich mit der Lösung auch nicht hin. Ich hoffe, es kann mir jemand behilflich sein. :-)

LG Bananenmann86

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. :-)

        
Bezug
Kerne und Urbilder: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Do 22.07.2010
Autor: angela.h.b.


> Es seien die Matrix
>  
> A := [mm]\pmat{ 1 & -1 & 1 & 0 & 1 \\ -1 & -1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & -1 \\ -1 & 0 & 1 & -1 & 0 } \in \mathbb{Z}_{3}^{4x5}[/mm]
>  
> sowie die Vektoren [mm]b_{1}[/mm] := (0,0,1,0), [mm]b_{2}[/mm] := (1,0,1,1)
> [mm]\in \mathbb{Z}_{3}^4[/mm] gegeben. Es sei [mm]\varphi_{A}[/mm] die
> lineare Abbildung [mm]\varphi_{A}[/mm] : [mm]\mathbb{Z}_{3}^5 \rightarrow \mathbb{Z}_{3}^4,[/mm]
> x [mm]\mapsto[/mm] Ax.
>  
> Bestimmen Sie [mm]Kern(\varphi_{A}), \varphi_{A}^{-1} ({b_{1}}), \varphi_{A}^{-1} ({b_{2}})[/mm]
> und geben Sie [mm]\left| Kern(\varphi_{A}) \right|, \left| \varphi_{A}^(-1) ({b_{1}}) \right|, \left| \varphi_{A}^(-1) ({b_{2}}) \right|[/mm]
> an.
>  Hallo,
>  
> ich bins mal wieder mit einer wahrscheinlich vollkommen
> trivialen Frage, allerdings blicke ich gerade nicht
> dahinter.
>  
> Um [mm]Kern(\varphi_{A})[/mm] auszurechnen, löse ich das homogene
> Gleichungssystem A und erhalte
>  
> [mm]\pmat{ 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 }[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> und somit
>  
> {(r-s, t-r-s, r, s, t) | r,s,t [mm]\in \mathbb{Z}_3[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  
> Jetzt setz ich jeweils r, s und t 1 und erhalte als
> Gleichung
>  
> {r(1,-1,1,0,0) + s(-1,-1,0,1,0) + t(0,1,0,0,1) | r,s,t [mm]\in \mathbb{Z}_3[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  
> Nun kommt das Problem.. In der Lösung steht im nächsten
> Schritt als Lösungsmenge
>  
> \{(1,-1,1,0,0),(1,1,0,-1,0),(0,1,0,0,1)\}

Hallo,

diese Lösungsmenge ist zu klein.

Es gehören doch schonmal die -1-fachen der obigen Vektoren auch in die Lösungsmenge.

Ich denke, daß es heißen sollte L=<(1,-1,1,0,0),(1,1,0,-1,0),(0,1,0,0,1)>, oder L= LH\{(1,-1,1,0,0),(1,1,0,-1,0),(0,1,0,0,1)\} oder wie auch immer Ihr das schreibt.
Die Lösungsmenge ist der von diesen drei Vektoren aufgespannte Raum.

Gruß v. Angela




Bezug
                
Bezug
Kerne und Urbilder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Do 22.07.2010
Autor: Bananenmann86

Oh ja, tut mir leid, das sollten keine geschweiften Klammern sein in der Lösungsmenge.

L=<(1,-1,1,0,0),(1,1,0,-1,0),(0,1,0,0,1)>

ist korrekt. So steht es auch in der Lösung.

Ich verstehe allerdings den Übergang zu dieser Zeile nicht.
Wie komme ich von

{r(1,-1,1,0,0) + s(-1,-1,0,1,0) + t(0,1,0,0,1) | r,s,t [mm] \in \mathbb{Z}_3 [/mm] }

zu der Lösungsmenge?

Bezug
                        
Bezug
Kerne und Urbilder: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Do 22.07.2010
Autor: schachuzipus

Hallo Bananenmann86,

> Oh ja, tut mir leid, das sollten keine geschweiften
> Klammern sein in der Lösungsmenge.
>
> L=<(1,-1,1,0,0),(1,1,0,-1,0),(0,1,0,0,1)>
>  
> ist korrekt. So steht es auch in der Lösung.
>  
> Ich verstehe allerdings den Übergang zu dieser Zeile
> nicht.
>  Wie komme ich von
>  
> [mm] $\{r(1,-1,1,0,0) + s(-1,-1,0,1,0) + t(0,1,0,0,1) | r,s,t \in \mathbb{Z}_3\}$ [/mm]
>  
> zu der Lösungsmenge?

Na, das sind doch äquivalente Darstellungen der Lösungsmenge, ob du das als Spann der Vektoren oder als Menge aller LKen schreibst, ist doch einerlei.

Schaue dir mal die Definition "Spann" an.

Es ist doch [mm] $<\vec{a},\vec{b},\vec{c}>_{\mid\IZ_3}$ [/mm] die Menge aller Linearkombinationen der Vektoren [mm] $\vec{a},\vec{b},\vec{c}$ [/mm] in [mm] $\IZ_3$, [/mm] also [mm] $<\vec{a},\vec{b},\vec{c}>_{\mid\IZ_3}=\{r\cdot{}\vec{a}+s\cdot{}\vec{b}+t\cdot{}\vec{c}\mid r,s,t\in\IZ_3\}$ [/mm]

So ist das doch definiert ...

Gruß

schachuzipus

Bezug
                                
Bezug
Kerne und Urbilder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Do 22.07.2010
Autor: Bananenmann86

Aber der zweite Vektor ist in beiden Darstellungen anders. Laut deiner Definition (Lineare Hülle) müsste doch beide male das gleiche da stehen, was dann wiederum Sinn ergibt.
Einmal steht da (1,1,0,-1,0) und einmal (-1,-1,0,1,0). Das irritiert mich gerade ein wenig.. Möglicherweise ein Tippfehler in der Lösung oder habe ich wieder etwas falsch verstanden?

LG Bananenmann

Bezug
                                        
Bezug
Kerne und Urbilder: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Do 22.07.2010
Autor: angela.h.b.


> Aber der zweite Vektor ist in beiden Darstellungen anders.
> Laut deiner Definition (Lineare Hülle) müsste doch beide
> male das gleiche da stehen, was dann wiederum Sinn ergibt.
>  Einmal steht da (1,1,0,-1,0) und einmal (-1,-1,0,1,0). Das
> irritiert mich gerade ein wenig.. Möglicherweise ein
> Tippfehler in der Lösung oder habe ich wieder etwas falsch
> verstanden?
>  
> LG Bananenmann

Hallo,

wenn die Vektoren u,v,w einen Raum aufspannen, dann tun es -u, -v, -w genauso, und auch u,-v, w und andere.
Du kannst Dir das anhand der Def. des aufgespannten Raumes überlegen.

(Trotzdem sollte sicher eigentlich dasselbe dastehen - aber es ist wurscht.)

Gruß v. Angela




Bezug
                                                
Bezug
Kerne und Urbilder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Do 22.07.2010
Autor: Bananenmann86

Alles klar. :-) Dann vielen Dank für die Ausführungen.

LG Bananenmann86

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]