matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteKern und Rang
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Kern und Rang
Kern und Rang < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern und Rang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Mi 07.03.2012
Autor: Lunar

Aufgabe
Seien φ: V → W und ψ: W → U zwei lineare Abbildungen, wobei die Vektorräume U, V, W endliche Dimensionen haben. Wir untersuchen die Komposition
ψ◦φ:V →U. Zeige:
(a) Kern(ψ ◦ φ) ⊃ Kern(φ).
(b) Rang(ψ ◦ φ) ≤ min(Rang φ, Rang ψ).

Hallo!

Bin auf einige Probleme gestossen, beim Beweisen dieser zwei Aussagen.
Ich habe einfach gar keinen brauchbaren Ansatz.
a) ist mir intuitiv eigentlich klar, aber das reicht ja wohl nicht für eienen Beweis ;)

Hat jemand eine Idee, wie man so etwas angehen kann?

Vielen Dank!

        
Bezug
Kern und Rang: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mi 07.03.2012
Autor: fred97


> Seien φ: V → W und ψ: W → U zwei lineare Abbildungen,
> wobei die Vektorräume U, V, W endliche Dimensionen haben.
> Wir untersuchen die Komposition
>   ψ◦φ:V →U. Zeige:
>  (a) Kern(ψ ◦ φ) ⊃ Kern(φ).
>  (b) Rang(ψ ◦ φ) ≤ min(Rang φ, Rang ψ).
>  Hallo!
>  
> Bin auf einige Probleme gestossen, beim Beweisen dieser
> zwei Aussagen.
>  Ich habe einfach gar keinen brauchbaren Ansatz.
>  a) ist mir intuitiv eigentlich klar, aber das reicht ja
> wohl nicht für eienen Beweis ;)


Wenn man zeigen soll, das einTopf in einem anderen enthalten ist, nimmt man sich ein Element aus dem 1. Topf und zeigt, dass es auch im anderen Topf liegt.

1. Topf: [mm] Kern(\phi), [/mm] anderer Topf: Kern( [mm] \psi \circ \psi) [/mm]

   x [mm] \in [/mm] Kern [mm] (\phi) [/mm]  ==>  [mm] \phi(x)=0 [/mm]  ==>  [mm] (\psi \circ \phi)(x)= \psi(\phi(x)) =\psi(\phi(0))=0 [/mm]

FRED

>  
> Hat jemand eine Idee, wie man so etwas angehen kann?
>  
> Vielen Dank!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]