matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKern und Bild bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Kern und Bild bestimmen
Kern und Bild bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern und Bild bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Sa 17.02.2007
Autor: Fuffi

Aufgabe
Sei f: [mm] \IR^{3} \to \IR^{3} [/mm] die folgendermaßen Definierte Abbildung:
f: (x,y,z) [mm] \mapsto [/mm] (x+2y+z, y+z, -x+3y+4z).
Bestimmen sie Kern(f) und Bild(f)

Also Kern habe ich raus das ist [mm] <\vektor{1 \\ -1 \\ 1}> [/mm] . Aber was mache ich beim Bild. Ich habe die Abbildungsmatrix aufgestellt:
[mm] \pmat{ 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 } [/mm]
Diese Matrix ist (aufgrund des ersten Ergebnisses logisch) linear abhängig. Aber wie bekomme ich jetzt das Bild raus?

        
Bezug
Kern und Bild bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Sa 17.02.2007
Autor: angela.h.b.


> Sei f: [mm]\IR^{3} \to \IR^{3}[/mm] die folgendermaßen Definierte
> Abbildung:
>  f: (x,y,z) [mm]\mapsto[/mm] (x+2y+z, y+z, -x+3y+z, -x+3y+4z).
> Bestimmen sie Kern(f) und Bild(f)
>  Also Kern habe ich raus das ist [mm]<\vektor{1 \\ -1 \\ 1}>[/mm] .
> Aber was mache ich beim Bild. Ich habe die Abbildungsmatrix
> aufgestellt:
>  [mm]\pmat{ 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 }[/mm]
>  Diese
> Matrix ist (aufgrund des ersten Ergebnisses logisch) linear
> abhängig. Aber wie bekomme ich jetzt das Bild raus?

Hallo,

bei Deiner Matrix hast Du etwas falsch gemacht/vergessen: sie hat ja nur drei Zeilen!

Das Bild ist die lineare Hülle der Spaltenvektoren. Das ist in jedem Falle richtig, egal, ob sie abhängig sind oder nicht.
Meist lautet die Aufgabe aber, daß man eine Basis des Bildes angeben soll.
Dann mußt Du eine möglichst große unabhängige Teilmenge der Spaltenvektoren finden.

Dein Kern stimmt nicht. Es ist [mm] f\vektor{1 \\ -1 \\ 1}=(1+2*(-1)+1, [/mm] (-1)+1, -1+3*(-1)+1, [mm] -1+3*(-1)+4*1)\not=\vektor{0 \\ 0 \\ 0} [/mm]

Gruß v. Angela

Bezug
                
Bezug
Kern und Bild bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Sa 17.02.2007
Autor: Fuffi

Vielen Dank für die schnelle Antwort mir ist leider oben ein Fehler unterlaufen, wird korrigiert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]