matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKern und Bild
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Kern und Bild
Kern und Bild < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern und Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Mi 19.01.2005
Autor: nitro1185

Hallo!!Ich hätte eine kleine Frage an euch!!

Es sei V ein Vektorraum aller Polynomfunktionen von Q--->Q vom Grad kleiner oder gleich 2!!

Also: V={ p: Q-->Q/ p Polynomfunktion, deg(p) [mm] \le [/mm] 2}

Gegeben ist die lineare Abbildung F:

F: V ----> [mm] R^{4} [/mm]

p --------> (p(0),p(1),p(-1),p(2))

Gesucht sind Bild und Kern dieser Abbildung!!Ich verstehe die Materie schon, aber weiß nicht wie ich die Abbildungsmatrix in diesem Fall wählen soll!!!

v=(v1,v2,v3)   Basis von V       [mm] (v_{i})_{j} [/mm] = 0 für i [mm] \ne [/mm] j     und  1 für i=j

-->Standardbasis für Funktionenräume

Wie soll ich die Abbildungsmatrix berechnen

Ich muss doch f(v1),f(v2),f(v3) berechnen und die Ergebnisse in Matrixform schreiben--Das dürfte dann die Abbildungsmatrix sein,oder???

MFG daniel



        
Bezug
Kern und Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Mi 19.01.2005
Autor: moudi

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Hallo!!Ich hätte eine kleine Frage an euch!!
>  
> Es sei V ein Vektorraum aller Polynomfunktionen von Q--->Q
> vom Grad kleiner oder gleich 2!!
>  
> Also: V={ p: Q-->Q/ p Polynomfunktion, deg(p) [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

2}

>  
> Gegeben ist die lineare Abbildung F:
>  
> F: V ----> [mm]R^{4} [/mm]
>  
> p --------> (p(0),p(1),p(-1),p(2))
>  
> Gesucht sind Bild und Kern dieser Abbildung!!Ich verstehe
> die Materie schon, aber weiß nicht wie ich die
> Abbildungsmatrix in diesem Fall wählen soll!!!
>  
> v=(v1,v2,v3)   Basis von V       [mm](v_{i})_{j}[/mm] = 0 für i [mm]\ne[/mm]
> j     und  1 für i=j
>  
> -->Standardbasis für Funktionenräume

Hallo Daniel

Als Basis von V würde ich die Polynome $1, x, [mm] x^2$ [/mm] wählen und als Basis von [mm] $\IR^4$ [/mm] würde ich die Standardbasis wählen.

>  
> Wie soll ich die Abbildungsmatrix berechnen
>  
> Ich muss doch f(v1),f(v2),f(v3) berechnen und die
> Ergebnisse in Matrixform schreiben--Das dürfte dann die
> Abbildungsmatrix sein,oder???

Genau so ist es.

mfG Moudi

>  
> MFG daniel
>  
>
>  

Bezug
                
Bezug
Kern und Bild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 Mi 19.01.2005
Autor: nitro1185

Danke das war ein sehr guter Tipp von dir!!!!!!

MFG Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]