matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKern richtig bestimmen..
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Kern richtig bestimmen..
Kern richtig bestimmen.. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern richtig bestimmen..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Di 25.03.2014
Autor: Kartoffelchen

Aufgabe
Zu gegebenen linearen Abbildungen zu Polynomen (Standardbasis = (1, x, [mm] x^2, x^3)) [/mm] sind zwei Matrizen sind gegeben bzw. wurden sie berechnet und lauten:

$A = (2, 0, [mm] \frac{2}{3}, [/mm] 0)$ (bzgl. einer linearen Abbildung f)
$B =  [mm] \begin{pmatrix} 1 & -1 & 1 & -1 \\1 & 0 & 0 & 0 \\1 & 1 & 1 & 1 \end{pmatrix}$ [/mm] (bzgl. einer linearen Abbildung g)

Zu berechnen ist nun der Kern der Matrizen, um dann zu zeigen, dass
der Kern von B eine echte Teilmenge des Kerns von A ist.


1.) Zum Kern einer zur Matrix B gehörenden linearen Abbildung gilt definitionsgemäß für alle $v [mm] \in [/mm] ker$ [mm] $F_B [/mm] (k) = 0$. Da diese lineare Abbildung nun durch Matrix B eindeutig bestimmt ist löse ich ein homogenes LGS, also die Matrix:

$(B|0) = ... = [mm] \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\end{pmatrix}$, [/mm] d.h. es ist  $ker(g) = [mm] span\{x - x^3\}$ [/mm] (Dimension 1?)

Da nun auch $A [mm] \cdot [/mm] (0, x, 0, [mm] -x^3) [/mm] = 0 $ ist der Kern von g zumindest im Kern von f enthalten! Nun möchte ich den Kern von f bestimmen, um dann zeigen zu können, dass er mindestens Dimension 2 besitzt.

Wenn ich nun $ (A|0) = (2, 0 , [mm] \frac{2}{3}, [/mm] 0, 0)$  lösen möchte.. naja dann ist doch $ [mm] x^2 [/mm] = -3 $ und damit $ker(f) = [mm] span\{-3, 0, 1, 0\}$ [/mm] ?! Irgendwas passt da nicht.

        
Bezug
Kern richtig bestimmen..: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Di 25.03.2014
Autor: MathePower

Hallo Kartoffelchen,

> Zu gegebenen linearen Abbildungen zu Polynomen
> (Standardbasis = (1, x, [mm]x^2, x^3))[/mm] sind zwei Matrizen sind
> gegeben bzw. wurden sie berechnet und lauten:
>  
> [mm]A = (2, 0, \frac{2}{3}, 0)[/mm] (bzgl. einer linearen Abbildung
> f)
>  [mm]B = \begin{pmatrix} 1 & -1 & 1 & -1 \\1 & 0 & 0 & 0 \\1 & 1 & 1 & 1 \end{pmatrix}[/mm]
> (bzgl. einer linearen Abbildung g)
>  
> Zu berechnen ist nun der Kern der Matrizen, um dann zu
> zeigen, dass
>  der Kern von B eine echte Teilmenge des Kerns von A ist.
>  
> 1.) Zum Kern einer zur Matrix B gehörenden linearen
> Abbildung gilt definitionsgemäß für alle [mm]v \in ker[/mm] [mm]F_B (k) = 0[/mm].
> Da diese lineare Abbildung nun durch Matrix B eindeutig
> bestimmt ist löse ich ein homogenes LGS, also die Matrix:
>  
> [mm](B|0) = ... = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\end{pmatrix}[/mm],
> d.h. es ist  [mm]ker(g) = span\{x - x^3\}[/mm] (Dimension 1?)
>  
> Da nun auch [mm]A \cdot (0, x, 0, -x^3) = 0[/mm] ist der Kern von g
> zumindest im Kern von f enthalten! Nun möchte ich den Kern
> von f bestimmen, um dann zeigen zu können, dass er
> mindestens Dimension 2 besitzt.
>  
> Wenn ich nun [mm](A|0) = (2, 0 , \frac{2}{3}, 0, 0)[/mm]  lösen
> möchte.. naja dann ist doch [mm]x^2 = -3[/mm] und damit [mm]ker(f) = span\{-3, 0, 1, 0\}[/mm]
> ?! Irgendwas passt da nicht.


Wenn [mm]p=\pmat{p_{0} \\ p_{1} \\ p_{2} \\ p_{3}}[/mm] ist,
wobei [mm]p_{i}[/mm] der Koeffizient vor [mm]x^{i}, \ i=0,1,2,3[/mm] bedeutet,
dann muss die Gleichung

[mm]2*p_{0}+0*p_{1}+\bruch{2}{3}*p_{2}+0*p_{3}=0[/mm] erfüllt sein.

Bestimme nun die Lösungsmenge dieser Gleichung.


Gruss
MathePower

Bezug
        
Bezug
Kern richtig bestimmen..: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Mi 26.03.2014
Autor: fred97

Zu dim(ker(f)):

Ist V:= Menge aller Polynome mit Grad [mm] \le [/mm] 3, so ist doch f eine Linearform auf V. Da f [mm] \ne [/mm] 0, haben wir

   dim(Bild(f))=1.

Wegen

  4 = dim(V)= dim (ker(f))+dim(Bild(f))

folgt:  dim (ker(f))=3.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]