matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKern einer Matrix über Z/2Z
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Kern einer Matrix über Z/2Z
Kern einer Matrix über Z/2Z < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern einer Matrix über Z/2Z: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Mo 15.07.2013
Autor: ThomasTT

Sei $A$ eine [mm] $n\times [/mm] m$ Matrix mit ganzzahligen Einträgen. Sei $n<m$, dann ist der Kern [mm] $K=\ker(A)\subseteq \mathbb R^m$ [/mm] nicht leer. Doch was kann man über den Kern $K'$ von $A'= (A\ mod\ 2)$ über [mm] $\mathbb F_2 [/mm] = [mm] \mathbb Z/2\mathbb [/mm] Z$ sagen? Sprich wenn $K$ sagen wir $d$ Basisvektoren hat, hat der Kern $K'$ dann $d'$ Basisvektoren mit [mm] $d\le [/mm] d'$ ?

Seien also [mm] $\{v_1,...v_d\}\subset [/mm] K$ die $d$ Basisvektoren von $K$, dann können wir zunächst annehmen, dass all diese Vektoren in [mm] $\mathbb Z^m$ [/mm] sind. Nehmen wir diese dann mod 2, so erhalten wir die Vektoren [mm] $\{v'_1,...,v'_d\}$. [/mm] Und diese sind dann in [mm] $K'\subset \mathbb F_2^m$. [/mm] Doch nun bin ich mir unsicher wie ich weiter verfahren sollte.



        
Bezug
Kern einer Matrix über Z/2Z: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mo 15.07.2013
Autor: Schadowmaster

Hey Thomas,

Es stimmt, es ist $(K mod 2) [mm] \subseteq [/mm] K'$.
Allerdings hat deine Argumentation noch ein kleines Problem:
zB  [mm] $\vektor{1 \\ 2}$ [/mm] und [mm] $\vektor{1 \\ 0}$ [/mm] sind linear unabhängig über [mm] $\IZ$ [/mm] bzw. [mm] $\IQ$, [/mm] über [mm] $\IF_2$ [/mm] allerdings nicht mehr (dort sind sie sogar gleich).
Daher kannst du nicht sagen, dass die [mm] $\{v_1',\ldots , v_d'\}$ [/mm] zu einer Basis von $K'$ ergänzt werden können, da sie im Allgemeinen nicht linear unabhängig sein müssen.
Daher erhältst du leider auch nicht $d [mm] \leq [/mm] d'$.

Es gilt tatsächlich $d [mm] \leq [/mm] d'$, allerdings kannst du das leider nicht auf diese Art zeigen.
Kennst du schon den Begriff des Rangs einer Matrix und weißt du was dieser mit der Dimension des Kerns zu tun hat?
Wenn ja dann versuch mal zu zeigen, dass $Rang(A') [mm] \leq [/mm] Rang(A)$.

Hinweis: Haben wir eine nichttriviale Darstellung der $0$ als
$0 = [mm] \sum_i^m z_iv_i$ [/mm] mit [mm] $v_i \in \IZ^m$ [/mm] und [mm] $z_i \in \IZ$ [/mm] nicht alle gleich $0$, so erhalten wir auch modulo $2$ eine Darstellung der 0 - diese könnte aber trivial sein.
Zeige, dass aus dieser Darstellung in [mm] $\IZ^m$ [/mm] auch eine nichttrivale Darstellung der $0$ in [mm] $\IF_2^m$ [/mm] folgt, also die [mm] $v_i'$ [/mm] linear abhängig über [mm] $\IF_2$ [/mm] sind.


lg

Schadow

Bezug
                
Bezug
Kern einer Matrix über Z/2Z: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Di 16.07.2013
Autor: ThomasTT

Also kurz zum Context: die Frage ist von einer Kommutative Algebra Altklausur (Bachelor 3. Jahr bzw. 6. Semester). Daher sind mir Dinge wie der Rang einer Matrix bekannt.

Was mich bei dieser Frage jedoch verwirrt, ist wie man die Zahlen $d$ und $d'$ auffassen kann. Darf man sie als Dimensionen der Kerne $K,K'$ bezeichnen? Aber wenn man $K$ als Teilmenge von [mm] $\mathbb Z^m$ [/mm] ansieht, dann kann man ja nicht wirklich von einer Dimension reden, da es ja kein Vektorraum ist.

Ich hatte nun versucht einen Gruppenhomomorphism zwischen der additiven Gruppe [mm] $K=\{x\in\mathbb Z^m\mid Ax=0\}$ [/mm] und der additiven Gruppe [mm] $K'=\{x\in \mathbb F_2^m\mid Ax\equiv 0 \mod 2\}$ [/mm] zu finden. Beispielsweise $f:K/2K [mm] \to [/mm] K'$. Denn wenn $f$ injektiv ist, dann wäre doch [mm] $d\le [/mm] d'$, oder? Aber ich komme immer etwas durcheinander.

Bezug
                        
Bezug
Kern einer Matrix über Z/2Z: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Di 16.07.2013
Autor: Schadowmaster

Ich nehme stark an, dass sowohl $d$ als auch $d'$ Dimensionen sein sollen.
[mm] $\IF_2$ [/mm] ist ein Körper, da macht das also kein Problem.
Für $K$ verstehe ich das so, dass man eine Basis des Kerns (als [mm] $\IQ-$Vektorraum) [/mm] ausrechnet und jeden einzelnen Basisvektor mit einem geeigneten skalaren Vielfachen multipliziert, sodass er ganzzahlig wird.
Natürlich hast du Recht, $d$ ist nicht die Dimension von $K$ als [mm] $\IZ-$Modul [/mm] (hier müsste man nämlich erstmal die Frage stellen, ob $K$ überhaupt frei ist).

Der Gruppenhomomorphismus wird dich wahrscheinlich nicht sehr weit bringen, da $K$ unendlich groß ist und $K'$ nur endlich.


lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]