matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKern, Selbstadjungierte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Kern, Selbstadjungierte
Kern, Selbstadjungierte < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern, Selbstadjungierte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Sa 27.10.2012
Autor: sissile

Aufgabe
Sei [mm] \phi: [/mm] V->W eine lineare ABbildung zwischen endlich dimensionalen Euklidischen oder unitären Vektorräumen.
Ich möchte zeigen:
[mm] ker(\phi) [/mm] = [mm] ker(\phi^{\*} \phi) [/mm]



Hallo,
Diese Aussge würde ich für einen Beweis brauchen. Ich weiß leider nicht ob sie so überhaupt gilt.
Vlt weiß wer mehr darüber ;))

Die eine Richtung ist klar.
v [mm] \in ker(\phi) [/mm] , dh [mm] \phi(v)=0 [/mm]
[mm] \phi^{\*} \phi [/mm] (v) = [mm] \phi^{\*} [/mm] (0)=0 -> v [mm] \in ker(\phi^{\*} \phi) [/mm]

v [mm] \in ker(\phi^{\*} \phi) [/mm]  , dh [mm] \phi^{\*} \phi [/mm] (v)=0
ZuZeigen v [mm] \in ker(\phi) [/mm] <=> [mm] \phi(v)=0 [/mm]
Da ist mir kein Beweis eingefallen

Ich hab vergessen, das in den Vorrausetzungen noch wäre das [mm] \phi [/mm] injektiv ist, ist das notwendig?
Liebe Grüße

        
Bezug
Kern, Selbstadjungierte: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 So 28.10.2012
Autor: fred97


> Sei [mm]\phi:[/mm] V->W eine lineare ABbildung zwischen endlich
> dimensionalen Euklidischen oder unitären Vektorräumen.
>  Ich möchte zeigen:
>  [mm]ker(\phi)[/mm] = [mm]ker(\phi^{\*} \phi)[/mm]
>  
>
> Hallo,
>  Diese Aussge würde ich für einen Beweis brauchen. Ich
> weiß leider nicht ob sie so überhaupt gilt.
>  Vlt weiß wer mehr darüber ;))
>  
> Die eine Richtung ist klar.
>  v [mm]\in ker(\phi)[/mm] , dh [mm]\phi(v)=0[/mm]
>  [mm]\phi^{\*} \phi[/mm] (v) = [mm]\phi^{\*}[/mm] (0)=0 -> v [mm]\in ker(\phi^{\*} \phi)[/mm]

>
> v [mm]\in ker(\phi^{\*} \phi)[/mm]  , dh [mm]\phi^{\*} \phi[/mm] (v)=0
>  ZuZeigen v [mm]\in ker(\phi)[/mm] <=> [mm]\phi(v)=0[/mm]

>  Da ist mir kein Beweis eingefallen
>  
> Ich hab vergessen, das in den Vorrausetzungen noch wäre
> das [mm]\phi[/mm] injektiv ist, ist das notwendig?

Nein.

Ich bez. mit <*,*> das Innenprodukt auf V.

Zeige: aus [mm] \phi^{\*} \phi(v)=0 [/mm]  folgt [mm] <\phi(v), \phi(v)> [/mm] =0.

FRED


>  Liebe Grüße


Bezug
                
Bezug
Kern, Selbstadjungierte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 So 28.10.2012
Autor: sissile

Hallo,
danke für den Post

> Zeige: aus $ [mm] \phi^{*} \phi=0 [/mm] $  folgt $ [mm] <\phi(v), \phi(v)> [/mm] $ =0.

[mm] <\phi(v), \phi(v)> [/mm] = [mm] <\phi^{\*} \phi(v), [/mm] v> =<0,v>=0
Wie kann ich nun aber schon schließen, dass v [mm] \in ker(\phi) [/mm] ist?

Liebe Grüße

Bezug
                        
Bezug
Kern, Selbstadjungierte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 So 28.10.2012
Autor: fred97


> Hallo,
>  danke für den Post
>  > Zeige: aus [mm]\phi^{*} \phi=0[/mm]  folgt [mm]<\phi(v), \phi(v)>[/mm] =0.

>
> [mm]<\phi(v), \phi(v)>[/mm] = [mm]<\phi^{\*} \phi(v),[/mm] v> =<0,v>=0
>  Wie kann ich nun aber schon schließen, dass v [mm]\in ker(\phi)[/mm]
> ist?

Ist w [mm] \in [/mm] V und <w,w>=0 , was folgt denn dann für w ????

FRED

>  
> Liebe Grüße


Bezug
                                
Bezug
Kern, Selbstadjungierte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 So 28.10.2012
Autor: sissile

Das w=0 sein muss.

Danke ;)

Liebe grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]