matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKern, Innere Automorphismen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Kern, Innere Automorphismen
Kern, Innere Automorphismen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern, Innere Automorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:42 So 25.11.2012
Autor: sissile

Aufgabe
[mm] \phi: [/mm] G-> Inn(G)
Warum ist der [mm] ker(\phi) [/mm] = Z(G) (Zentrum von G)

Hallo

Ist G eine Grupe und a [mm] \in [/mm] G , o wird [mm] \phi_a [/mm] : G-> G , [mm] \phi_a [/mm] (x) = a x [mm] a^{-1} [/mm] als innerer Automorphismus von G bezeichnet.
Dass [mm] \phi: [/mm] G-> Inn(G)ein  Homomorphismus ist trivial würd ich mal sagen
[mm] ker(\phi)=? [/mm]
Z(G) = [mm] \{ a \in G | ax =x a, \forall x \in G \} [/mm]
k [mm] \in [/mm] Z(G) beliebig: [mm] \phi_a [/mm] (k)=  a k [mm] a^{-1} [/mm] = k
Aber das bildet doch nicht auf das neutrale element ab?

        
Bezug
Kern, Innere Automorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 So 25.11.2012
Autor: Sax

Hi,

> [mm]\phi:[/mm] G-> Inn(G)
>  Warum ist der [mm]ker(\phi)[/mm] = Z(G) (Zentrum von G)
>  Hallo
>  
> Ist G eine Grupe und a [mm]\in[/mm] G , o wird [mm]\phi_a[/mm] : G-> G ,
> [mm]\phi_a[/mm] (x) = a x [mm]a^{-1}[/mm] als innerer Automorphismus von G
> bezeichnet.
>  Dass [mm]\phi:[/mm] G-> Inn(G)ein  Homomorphismus ist trivial würd

> ich mal sagen

Würd ich auch sagen, aber unsere Ansicht reicht wahrscheinlich nicht als Beweis, also : aufschreiben !

>  [mm]ker(\phi)=?[/mm]
>  Z(G) = [mm]\{ a \in G | ax =x a, \forall x \in G \}[/mm]
>  k [mm]\in[/mm]
> Z(G) beliebig: [mm]\phi_a[/mm] (k)=  a k [mm]a^{-1}[/mm] = k
> Aber das bildet doch nicht auf das neutrale element ab?

Was meinst du mit "das" ?
Du musst die Gleichheit von [mm]ker(\phi)[/mm] und Z(G) zeigen, also die Gleichwertigkeit der Aussagen "[mm]\phi:[/mm] bildet k auf das neutrale Element von Inn(G) ab" und "k kommutiert mit allen Elementen von G".
Das ist nicht so schwierig, wenn du dir klar machst, welches das neutrale Element von Inn(G) ist.

Gruß Sax.

Bezug
                
Bezug
Kern, Innere Automorphismen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 So 25.11.2012
Autor: sissile

danke ist nun klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]