matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKern/Bild von Polynomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Kern/Bild von Polynomen
Kern/Bild von Polynomen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern/Bild von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Fr 06.01.2006
Autor: muhkuh

Aufgabe
Gegeben ist der Raum aller reellen Polynome vom Grad höchstens drei.
[mm] G(p)(x):=\bruch{p(x)+p(-x)}{2} [/mm]

Hallo, ich schreibe morgen eine Klausur über lin. Abbildungen.
ich hoffe ihr könnt mir bei nem kleinen helfen.
ich weiß wie man den Kern/das Bild von Matrizen berechnet.
aber wie macht man das wenn anstatt von ner darstellenden Matrix Polynome gegeben sind? wie z.b. in der aufgabe oben.
(ich will jetzt aber keine Lsg. zu der Aufgabe, sondern nur den Ansatz um daran zu kommen)
DANKE!

(die frage habe ich in keinem anderen Forum gepostet)

        
Bezug
Kern/Bild von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Fr 06.01.2006
Autor: felixf


> Gegeben ist der Raum aller reellen Polynome vom Grad
> höchstens drei.
>  [mm]G(p)(x):=\bruch{p(x)+p(-x)}{2}[/mm]
>  Hallo, ich schreibe morgen eine Klausur über lin.
> Abbildungen.
>  ich hoffe ihr könnt mir bei nem kleinen helfen.
>  ich weiß wie man den Kern/das Bild von Matrizen
> berechnet.
>  aber wie macht man das wenn anstatt von ner darstellenden
> Matrix Polynome gegeben sind? wie z.b. in der aufgabe
> oben.
>  (ich will jetzt aber keine Lsg. zu der Aufgabe, sondern
> nur den Ansatz um daran zu kommen)

Nun, du weisst inwiefern die Polynome vom Grad [mm] $\le [/mm] 3$ einen Vektorraum bilden? Es sind alle Linearkombinationen [mm] $\lambda_3 x^3 [/mm] + [mm] \lambda_2 x^2 [/mm] + [mm] \lambda_1 [/mm] x + [mm] \lambda_0$ [/mm] mit [mm] $\lambda_0, \dots, \lambda_3 \in \IR$: [/mm] Also ist der Raum (bezeichnen wir ihn mal mit [mm] $P_3$) [/mm] isomorph zu [mm] $\IR^3$. [/mm]

Wenn du nun eine lineare Abbildung $f : [mm] P_3 \to P_3$ [/mm] hast, kannst du sie auf den 'Basisvektoren' (dies sind $1$, $x$, [mm] $x^2$, $x^3$, [/mm] welche den Koeffizientenvektoren [mm] $(\lambda_0, \dots, \lambda_4) [/mm] = (1, 0, 0, 0)$, $(0, 1, 0, 0)$, $(0, 0, 1, 0)$, $(0, 0, 0, 1)$ entsprechen!) auswerten und wieder mit Hilfe der Basisvektoren darstellen (was genau das gleiche ist wie den Koeffizientenvektor hinzuschreiben). Und dadurch kannst du das ganze wieder auf ein Matrixproblem zurueckfuehren, indem du so die darstellende Matrix ausrechnest!

Hilft dir das weiter?

LG Felix



Bezug
                
Bezug
Kern/Bild von Polynomen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Fr 06.01.2006
Autor: muhkuh

ah na klar! danke =)
die darstellende matrix hatte ich auch schon, nur war ich zu blöd den kern von der auszurechnen und hab stattdessen versucht das von dem polynom zu machen =)

Bezug
                        
Bezug
Kern/Bild von Polynomen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Fr 06.01.2006
Autor: felixf


> ah na klar! danke =)
>  die darstellende matrix hatte ich auch schon, nur war ich
> zu blöd den kern von der auszurechnen und hab stattdessen
> versucht das von dem polynom zu machen =)

Nun mit dem Polynom selber ists auch nicht so schwer, wenn du $p(x) = [mm] \lambda_3 x^3 [/mm] + [mm] \lambda_2 x^2 [/mm] + [mm] \lambda_1 [/mm] x + [mm] \lambda_0$ [/mm] einsetzt und [mm] $\frac{p(x) + p(-x)}{2}$ [/mm] ausrechnest siehst du sofort wann ein solches Polynom im Kern ist :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]