matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Kern
Kern < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern: Notation
Status: (Frage) beantwortet Status 
Datum: 20:36 Mo 19.10.2009
Autor: Pacapear

Hallo zusammen!

Ich habe eine kurze Frage zur Notation des Kerns einer linearen Abbildung.

Unsere Defintion ist:

$f:V [mm] \to [/mm] V'$ lineare Abbildung, $Kern(f) := [mm] \{ v \in V | f(v)=0 \}$ [/mm]

Die $0$ hier müsste ja die $0$ aus $V'$ sein, richtig? Also [mm] 0_{V'} [/mm]

Und mehrmals in meiner Vorlesungsmitschrift steht da eine alternative Defintion, nämlich [mm] f^{-1}(\{0_V\}) [/mm]

Aber müsste es nicht eigentlich [mm] f^{-1}(\{0_{V'}\}) [/mm] heißen?

Weil ich suche ja alle die Elemente aus $V$, die mit $f$ auf [mm] $0_{V'} \in [/mm] V'$ aufgebildet werden, und auf diese [mm] $0_{V'} \in [/mm] V'$ wende ich doch dann die Umkehrabbildung an, damit ich genau die Elemente finde, die auf diese [mm] 0_{V'} [/mm] gehen.

Beim Urbild einer "normalen" Abbildung schreibt man ja auch [mm] f^{-1}(y) [/mm] wobei $y$ ein Element des Wertebereichs ist.

Was ist eigentlich, wenn die lineare Abbildung nicht injektiv ist, und mehrere Elemente auf die $0$ abgebildet werden? Dann geht diese Umkehrabbildungs-Schreibweise nicht mehr, oder?

LG, Nadine

        
Bezug
Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Mo 19.10.2009
Autor: XPatrickX


> Hallo zusammen!

Hallo!

>  
> Ich habe eine kurze Frage zur Notation des Kerns einer
> linearen Abbildung.
>  
> Unsere Defintion ist:
>  
> [mm]f:V \to V'[/mm] lineare Abbildung, [mm]Kern(f) := \{ v \in V | f(v)=0 \}[/mm]
>  
> Die [mm]0[/mm] hier müsste ja die [mm]0[/mm] aus [mm]V'[/mm] sein, richtig? Also
> [mm]0_{V'}[/mm]

Jup!

>  
> Und mehrmals in meiner Vorlesungsmitschrift steht da eine
> alternative Defintion, nämlich [mm]f^{-1}(\{0_V\})[/mm]
>  
> Aber müsste es nicht eigentlich [mm]f^{-1}(\{0_{V'}\})[/mm]
> heißen?
>  

Richtig erkannt!


> Weil ich suche ja alle die Elemente aus [mm]V[/mm], die mit [mm]f[/mm] auf
> [mm]0_{V'} \in V'[/mm] aufgebildet werden, und auf diese [mm]0_{V'} \in V'[/mm]
> wende ich doch dann die Umkehrabbildung an, damit ich genau
> die Elemente finde, die auf diese [mm]0_{V'}[/mm] gehen.
>  
> Beim Urbild einer "normalen" Abbildung schreibt man ja auch
> [mm]f^{-1}(y)[/mm] wobei [mm]y[/mm] ein Element des Wertebereichs ist.
>  
> Was ist eigentlich, wenn die lineare Abbildung nicht
> injektiv ist, und mehrere Elemente auf die [mm]0[/mm] abgebildet
> werden? Dann geht diese Umkehrabbildungs-Schreibweise nicht
> mehr, oder?

Doch, du musst diese schreibweise symbolisch betrachten! [mm] f^{-1} [/mm] hat hier nichts mit der Umkehrabbildung zu tun!



>  
> LG, Nadine

Gruß Patrick

Bezug
                
Bezug
Kern: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:54 Mo 19.10.2009
Autor: Pacapear

Hallo Patrick!

Vielen Dank für deine Antwort :-)

LG, Nadine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]