matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKeine Ahnung von DGLs???
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Keine Ahnung von DGLs???
Keine Ahnung von DGLs??? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Keine Ahnung von DGLs???: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Sa 26.06.2004
Autor: Fetteratte

Irgendwie passt meine Vorlesung nicht mit den Übungszetteln zusammen. Ich habe noch keine Ahnung von DGLs und auf meinem neuen Übungszettel sind nur Fragen dazu *grummel*

Kann mir jemand anhand der ersten Aufgabe erklären, was DGLs überhaupt sind und was ich damit anzufangen habe?

Aufgabe:

Betrachten wir die DGL [mm] \dot y (t)= \frac{1}{y(t)} [/mm]

Bestimmen sie explizit alle Lösungen. Welche Lösung ergibt sich für das AWP [mm] y(0)=1 [/mm] ?


Als ersten Schritt würde ich jetzt schreiben: [mm] \dot y (t)*y(t)=1 [/mm] und dann integrieren?
Und: Was ist das AWP?

Viele Grüße
Fetteratte

        
Bezug
Keine Ahnung von DGLs???: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Sa 26.06.2004
Autor: andreas

hi Fetteratte

differentialgleichungen (DGL's) sind gleichungen in denen funktionen [m]y[/m], sowie deren ableitungen [m] y', y'', \hdots, y^{(n)} [/m] und freie veränderliche (variablen) vorkommen, z.b. [m] x [/m] und lassen sich stets als [m] F(x, y, y', \hdots, y^{(n)}) = 0 [/m]  schreiben. das hört sich jetzt wahrscheinlich schlimmer an als es ist.


z.b. sind
[m] y + y'' = 0 [/m] oder [m] xy + \dfrac{y'}{x} = x [/m] differentialgleichungen. in der regel bist du an einer hinreichend oft stetig differnezierbaren (im ersten beispiel 2mal im zweiten beispiel 1mal stetig differenzierbaren) funktion [m] y(x) [/m] interessiert, die die dgl löst.

die differntialgleichung
[m] y(x) = y'(x) [/m] lässt sich z.b. folgendermaßen lösen:
[m] y'(x) = y(x) [/m] (sei [m] y(x) \not\equiv 0 [/m])
[m] \dfrac{y'(x)}{y(x)} = 1 [/m] (beidseitiges integrieren nach x)
[m] \int \dfrac{y'(x)}{y(x)} \text{d}x = \int 1 \text{d}x [/m]
[m] \ln|y(x)| = x + C [/m], wobei ich jetzt beide integrationskonstanten nach rechts gebracht habe
[m] \exp(\ln|y(x)|) = \exp(x + C) [/m]
[m] y(x) = \pm e^Ce^x [/m], (das [m] \pm[/m] kommt vom auflösen des betrages)
[m] y(x) = \tilde{C}e^x [/m], wobei [m] \tilde{C} \in \mathbb{R} \setminus \{0\} [/m].

setzt du jetzt noch die oben ausgeschlossene lösung [m] y(x) \equiv 0 [/m] in die differentialgleichung ein, so siehst du, das diese davon auch gelöst wird und du kannst für [m] \tilde{C} [/m] auch 0 zulassen. somit erhältst du als allgemenie lösung

[m] y(x) = ke^x \text{ mit } k \in \mathbb{R} [/m]. die lösung des awp (=anfangswertproblem) erhältstdu jetzt indem du den x- und y-wert einsetzt und damit das k bestimmst.

nun zu deinem beispiel (ich schreibe da im allgemeinen als freie variable x statt t):

[m] y'(x) = \frac{1}{y(x)} [/m] (sei [m] y(x) \not\equiv 0[/m])
[m] y'(x) \cdot y(x) = 1 [/m] (beidseitiges integrieren)
[m] \int y(x) \cdot y'(x) \text{d}x = \int 1 \text{d}x [/m]
[m] \dfrac{(y(x))^2}{2} = x + C [/m]
[m] y(x) = \pm \sqrt{2x +2C} [/m]

die oben ausgenommene funktion [m] y(x) \equiv 0 [/m] ist hier keine lösung, wie man durch einsetzen sieht, also erhält man als allgemeine lösung (mit der umbenennung [m] 2C = k \in \mathbb{R} [/m]:

[m] y(x) = \pm \sqrt{2x + k} [/m]

willst du nun das anfangswertproblem [m] y(0) = 1 [/m] lösen, so setzt du das einfach in die allgemeine lösung ein - die negative lösung fällt hier weg, da der wert im punkt null ja positiv sein soll:

[m] y(0) = \sqrt{2\cdot0 + k} \stackrel{!}{=} 1 \; \Longrightarrow \sqrt{k} \stackrel{!}{=} 1 \Longrightarrow k = 1 [/m]

also erhältst du als lösung des awp [m] y(x) = \sqrt{2x + 1} [/m], was du durch ableiten und einsetzen bei dgl immer gleich kontrolieren kannst.

das verfahren, das ich hier angewandt habe nennt sich "trennung der veränderlichen" und funktioniert bei dgl erster ordnung der form [m] y' = g(x)\cdot h(y) [/m], wobei dann alle ausdrücke mit x auf eine seite und alleausdrüche mit y auf die andere seite gebracht werden daher der name - und dann der ausdruck [m] \frac{y'}{h(y)} = g(x) [/m] beidseitig integriert wird. dabei musst du aufpassen, dass du die nullstllen [m] y_0 [/m] von [m] h(y) [/m] ausnimmst und gesondert untersuchst, da du sonst nurch nul dividieren würdest, was in der mathematik im allgemeinen zu keinen sinnvollen ergebnissen führt!

sorry, wenn die antwort etwas konfus geraten ist, ich hoffe es hilft dir für das erste trotzdem weiter. frage einfach nach, wenn irgendetwas unverständlich ist.

andreas

Bezug
                
Bezug
Keine Ahnung von DGLs???: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 So 27.06.2004
Autor: Fetteratte

Oh vielen Dank =) das hat mir schonmal erheblich weitergeholfen. Es ist einfach doof, wenn Vorlesung und Übung nicht zusammen passen.

Viele Grüße
Bianca

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]