matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenKegelschnitt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Trigonometrische Funktionen" - Kegelschnitt
Kegelschnitt < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kegelschnitt: Verunsichert
Status: (Frage) beantwortet Status 
Datum: 18:22 So 24.06.2012
Autor: Lewser

Aufgabe
Welcher Kegelschnitt wird durch folgende Gleichung dargestellt:

[mm] 2y^2-9x+12y=0 [/mm]

Unter dieser Aufgabe steht als Hinweis, man solle die Gleichungen durch quadratische Ergänzung auf die Hauptform bringen.

Im Papula steht folgende Formel:

[mm] Ax^2+By^2+Cx+Dy+E=0 [/mm]

mit der folgenden Definition:

Kreis: A=B
Hyperbel: A*B < 0
Ellipse: A*B > 0
Parabel: A=0, B ungleich 0 oder umgekehrt

Also komme ich bei dem gegebenen Beispiel auf eine Prabel, was auch laut Lösung richtig ist. Nur frage ich mich bzgl. des Hinweises unter der Aufgabe, ob es so einfach sein kann oder nur ein Zufall ist.

        
Bezug
Kegelschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 24.06.2012
Autor: Diophant

Hallo Lewser,

> Welcher Kegelschnitt wird durch folgende Gleichung
> dargestellt:
>
> [mm]2y^2-9x+12y=0[/mm]
> Unter dieser Aufgabe steht als Hinweis, man solle die
> Gleichungen durch quadratische Ergänzung auf die Hauptform
> bringen.
>
> Im Papula steht folgende Formel:
>
> [mm]Ax^2+By^2+Cx+Dy+E=0[/mm]
>
> mit der folgenden Definition:
>
> Kreis: A=B
> Hyperbel: A*B < 0
> Ellipse: A*B > 0
> Parabel: A=0, B ungleich 0 oder umgekehrt
>
> Also komme ich bei dem gegebenen Beispiel auf eine Prabel,
> was auch laut Lösung richtig ist. Nur frage ich mich bzgl.
> des Hinweises unter der Aufgabe, ob es so einfach sein kann
> oder nur ein Zufall ist.

Nun, auf die Regeln im Papula zu kommen, das ist alles andere als einfach. Der Spezialfall Parabel macht da eine Ausnahme: für den Fall A=0 und [mm] B\ne{0} [/mm] oder umgekehrt entsteht eine quadratische Funktion (die aber auch vom Typ f: y->x(y) sein kann). Wenn man mal voraussetzt, dass deren Schaubild eine Parabel ist (was so selbstverständlich nicht ist, denn was ist eine Parabel geometrisch?), dann folgt die Erkenntnis unmittelbar.

Du hast es also richtig beantwortet, genauer ist es eine liegende Parabel, die nach rechts geöffnet ist. Und die Hinweise sind natürlich kein Zufall (Der Papula ist gespickt mit sehr guten Hinweisen, da aber so gut wie nichts hergeleitet wird, mag das manchmal zufällig ausschauen).


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]