matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieKegel zusammenziehbar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Kegel zusammenziehbar
Kegel zusammenziehbar < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kegel zusammenziehbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Do 24.12.2015
Autor: Laura22

Frohes Fest euch allen!

Ich habe eine Frage, auf die ich zwar im Internet eine Antwort gefunden habe, diese aber nicht verstanden habe: Und zwar ist der Kegel [mm] CX:=X\times[0,1]/X\times\{0\} [/mm] zusammenziehbar. Rein anschaulich ist klar, dass man ihn mittels linearer Abbildungen auf die Spitze, nenne sie s, zusammenziehen kann. Wie formuliert man diese Homotopie nun? Kann man da nicht einfach H(x,t):=ts + (1-t)x, x [mm] \in [/mm] X, t [mm] \in [/mm] [0,1] hinschreiben? Das ist eine stetige Abbildung und es gilt H(x,0)= x und H(x,1)=s. Man müsste dann doch noch zeigen, dass für alle t und alle x [mm] \in [/mm] CX [mm] H_t(x)=ts [/mm] + (1-t)x [mm] \in [/mm] CX gilt, oder? Und genau das sehe ich nicht einfach so (klar CX ist anschaulich eine konvexe Menge, aber auch Konvexität müsste ich ja erst einmal zeigen)...
Was meint ihr dazu? Ich bedanke mich schon mal im Voraus!

Viele Grüße,
Laura

        
Bezug
Kegel zusammenziehbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Do 24.12.2015
Autor: Laura22

Ok, ich habe jetzt noch ein wenig gesucht und sooo einfach wie ich mir dachte geht das wirklich nicht.

Bezug
        
Bezug
Kegel zusammenziehbar: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Fr 25.12.2015
Autor: Ladon

Hallo Laura,

versuch es mal mit
[mm] $$H\colon CX\times I\to CX,\quad [/mm] H([x,s],t)=[x,(1-t)s+t].$$
Dann ist $H([x,s],0)=[x,s]$ und $H((x,s),1)=[x,1]$. Jetzt ist zwar die Spitze des Kegels bei mir $(x,1)$ und nicht $(x,0)$, aber offenbar sind [mm] $X\times I/X\times \{0\}\cong X\times I/X\times \{1\}$ [/mm] homöomorph und jeder zu einem zusammenziehbaren Raum homöomorphe Raum ist zusammenziehbar.

MfG
Ladon

Bezug
                
Bezug
Kegel zusammenziehbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:59 Sa 26.12.2015
Autor: Laura22

Hey,

danke sehr! :) Genau die Abbildung habe ich im Internet auch schon mal gefunden (gibt genau die Idee wieder, beliebige Punkte linear auf die Spitze zurückzuziehen) und es war mir erst mal nicht klar, warum sie überhaupt stetig ist. Ich habe zunächst eine (stetige) Abbildung
G:(X [mm] \times I)\times [/mm] I [mm] \to [/mm] X [mm] \times [/mm] I über ((x,s),t) [mm] \mapsto [/mm] (x,(1-t)s) definiert und dann mit der Quotientenabbildung [mm] \pi:X \times [/mm] I [mm] \to [/mm] CX komponiert:
[mm] \pi \circ [/mm] G:(X [mm] \times [/mm] I) [mm] \times [/mm] I [mm] \to [/mm] CX ist als Komposition stetiger Abb. stetig und erweitert zu der gesuchten Homotopie H, die du oben angegeben hast durch Übergang zum Quotienten CX [mm] \times [/mm] I. Man muss sich an der Stelle dann nur noch überlegen, dass H auch wirklich wohldefiniert ist und das ist es, weil alle Punkte X [mm] \times \{1\} [/mm] zu einem Punkt zusammengeschlagen werden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]