Kegel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:03 Mi 06.02.2008 | Autor: | Igor1 |
Aufgabe | (a) Sei [mm] B\subseteq \IR^{n} [/mm] eine beschränkte Teilmenge. Wir definieren den Kegel über der Basis B durch
K(B):={((1-t)x,t) [mm] \in \IR^{n}x\IR:0\le [/mm] t [mm] \le [/mm] 1, x [mm] \in [/mm] B}.
Sind B und K(B) Riemann-messbar, so gilt
[mm] \mu_{n+1}(K(B))= \bruch{1}{n+1} \mu_{n}(B).
[/mm]
(b) Sei [mm] B:=B_{1}(0). [/mm] Bestimme mit Teilaufgabe (a) den Inhalt des Kegels K(B).
|
Hallo,
zu (a):
Sind B und K(B) Riemann-integrierbar, so gilt :
[mm] \mu [/mm] (B):= [mm] \mu_{n} [/mm] (B):= [mm] \integral_{Q}^{}{X_{B}(x) dx}, [/mm] wobei X die chrakteristische Funktion ist.
[mm] \mu [/mm] (K(B)):= [mm] \mu_{n} [/mm] (K(B)):= [mm] \integral_{Q}^{}{X_{K(B)}(x) dx} [/mm] [mm] \Rightarrow [/mm] (!) [mm] \mu_{n+1}(K(B))= \bruch{1}{n+1} \mu_{n}(B) \gdw \mu_{n+1} [/mm] (K(B))= [mm] \bruch{1}{n+1} \integral_{Q}^{}{X_{(B)}(x) dx}
[/mm]
Bis dahin konnte ich meinen Lösungsansatz aufschreiben.
Wie geht man hier weiter vor. Das n+1 als Index irretiert mich, denn [mm] \mu [/mm] wird nur für n definiert. Welche Rolle spielt n bei der Definition ( ausser , dass es n-dimensionales Volumen der zugehörigen Menge ist.) Ich weiss
also nicht, wie ich günstig [mm] \mu_{n+1}(K(B)) [/mm] umschreiben kann. Für [mm] \mu_{n}(K(B)) [/mm] könnte man das oben angegeben Integral schreiben, jedoch [mm] \mu_{n+1}(K(B)) [/mm] und [mm] \mu_{n} [/mm] (K(B)) unterscheiden sich. Ich weiss nicht einfach, wie man hier weiterkommt.
Gruss
Igor
|
|
|
|
Hi,
> (a) Sei [mm]B\subseteq \IR^{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
eine beschränkte Teilmenge. Wir
> definieren den Kegel über der Basis B durch
> K(B):={((1-t)x,t) [mm]\in \IR^{n}x\IR:0\le[/mm] t [mm]\le[/mm] 1, x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
B}.
>
> Sind B und K(B) Riemann-messbar, so gilt
>
> [mm]\mu_{n+1}(K(B))= \bruch{1}{n+1} \mu_{n}(B).[/mm]
>
> (b) Sei [mm]B:=B_{1}(0).[/mm] Bestimme mit Teilaufgabe (a) den
> Inhalt des Kegels K(B).
>
>
> Hallo,
>
> zu (a):
>
> Sind B und K(B) Riemann-integrierbar, so gilt :
>
> [mm]\mu[/mm] (B):= [mm]\mu_{n}[/mm] (B):= [mm]\integral_{Q}^{}{X_{B}(x) dx},[/mm]
> wobei X die chrakteristische Funktion ist.
> [mm]\mu[/mm] (K(B)):= [mm]\mu_{n}[/mm] (K(B)):= [mm]\integral_{Q}^{}{X_{K(B)}(x) dx}[/mm]
> [mm]\Rightarrow[/mm] (!) [mm]\mu_{n+1}(K(B))= \bruch{1}{n+1} \mu_{n}(B) \gdw \mu_{n+1}[/mm]
> (K(B))= [mm]\bruch{1}{n+1} \integral_{Q}^{}{X_{(B)}(x) dx}[/mm]
>
> Bis dahin konnte ich meinen Lösungsansatz aufschreiben.
>
> Wie geht man hier weiter vor. Das n+1 als Index irretiert
> mich, denn [mm]\mu[/mm] wird nur für n definiert. Welche Rolle
> spielt n bei der Definition ( ausser , dass es
> n-dimensionales Volumen der zugehörigen Menge ist.) Ich
> weiss
> also nicht, wie ich günstig [mm]\mu_{n+1}(K(B))[/mm] umschreiben
> kann. Für [mm]\mu_{n}(K(B))[/mm] könnte man das oben angegeben
> Integral schreiben, jedoch [mm]\mu_{n+1}(K(B))[/mm] und [mm]\mu_{n}[/mm]
> (K(B)) unterscheiden sich. Ich weiss nicht einfach, wie man
> hier weiterkommt.
>
weiss jetzt nicht genau, was ihr so alles in der VL hattet, aber das sieht mir stark nach einer kombination aus fubini und transformationsformel (mehrdi. substitution) aus.
mach dir zunaechst klar, was K(B) ist: ein volumenkoerper mit der hoehe 1, der bei 0 noch die volle grundflaeche B hat. diese reduziert sich aber dann linear auf 0 (kegelspitze). es bietet sich also an, dieses integral mit fubini in 2 zu splitten
[mm] $\mu_{n+1}(K(B)) \int_{K(B)}dL^{n+1}$
[/mm]
[mm] $=\int_0^1\int_{B_t} dL^n\,dt$
[/mm]
mit [mm] $B_t=\{(1-t)x:x\in B\}$. [/mm] Wir koennen das auch vereinfachen, indem wir [mm] $B_t=\{tx:x\in B\}$ [/mm] setzen, das ist dann der gleiche koerper nur auf dem kopf, hat also das gleiche volumen.
Nun musst du das [mm] $B_t$ [/mm] integral in ein integral ueber $B$ ueberfuehren und das geht mit der transformationsformel, denn [mm] B_t [/mm] ergibt sich aus B durch eine einfache lineare transformation.
genug der tips, jetzt bist du dran!
gruss
matthias
|
|
|
|