matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungKartenhände
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - Kartenhände
Kartenhände < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kartenhände: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:17 Sa 02.04.2016
Autor: civman

Aufgabe
Das Kartendeck besteht aus 65 Karten - die Zahlenwerte 1 bis 13 in fünf verschiedenen Farben. Jeder Spieler erhält 8 Karten. Wie hoch sind die Wahrscheinlichkeiten für folgende Kartenhände (die restlichen Karten sind egal):
- 5 gleiche Zahlen
- 4 gleiche Zahlen
- 3 gleiche Zahlen
- 2 gleiche Zahlen
- Full House (drei und zwei gleiche Zahlen)
- 2x zwei gleiche Zahlen
- 5 aufeinander folgende Zahlen der selben Farbe
- 5 aufeinander folgende Zahlen beliebiger Farbkombination
- 5 Karten der gleichen Farbe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Wahrscheinlichkeiten von verschieden Pokervarianten sind mir bekannt. Leider habe ich keine passende Formel gefunden, um die Wahrscheinlichkeiten diesen veränderten Gegebenheiten anzupassen.

Vielen Dank im voraus für Eure Hilfe.

        
Bezug
Kartenhände: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:21 Sa 02.04.2016
Autor: luis52

Moin civman,

[willkommenmr]

Bei uns ist es Brauch, dass von jedem Fragesteller ein Mindestmass an Eigenleistung erbracht wird. Also, es waere schoen, wenn du zunaechst deine Vorueberlegungen darlegen wuerdest.



Bezug
                
Bezug
Kartenhände: Bräuche, Hilfe und kein Ansatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:06 Sa 02.04.2016
Autor: civman

Hallo Luis,

wenn ich auch nur die kleinste Ahnung hätte, würde ich hier gar nicht fragen, da ich dann wüsste wonach ich suchen muss. Da ich über 20 Jahre keine mathematische Formel mehr benutzt habe, fällt es mir schwer einen ersten Ansatzpunkt zu finden. Wenn natürlich in diesem Forum Bräuche wichtiger sind, als Menschen zu helfen, entschuldige ich mich, hier nach Hilfe gefragt zu haben.

Gruss
civman

PS: Nein, das ist weder eine Hausaufgabe noch eine Frage aus irgendeiner Klausur. Die Berechnung benötige ich für die Entwicklung eines Kartenspiels.

Bezug
        
Bezug
Kartenhände: 5 gleiche Zahlen, Rückfrage
Status: (Antwort) fertig Status 
Datum: 03:52 So 03.04.2016
Autor: tobit09

Hallo civman und auch von mir ein herzliches [willkommenmr]!


Ein kleiner Anfang:


> Das Kartendeck besteht aus 65 Karten - die Zahlenwerte 1
> bis 13 in fünf verschiedenen Farben. Jeder Spieler erhält
> 8 Karten. Wie hoch sind die Wahrscheinlichkeiten für
> folgende Kartenhände (die restlichen Karten sind egal):

Die Kartenvergabe an EINEN Spieler lässt sich durch ein Laplace-Experiment modellieren mit [mm] $|\Omega|=\binom{65}{8}$, [/mm] wobei [mm] $\binom{65}{8}$ [/mm] einen Binomialkoeffizienten bezeichnet.

Die Wahrscheinlichkeit eines Ereignisses $A$ berechnet sich dann zu

(*)        [mm] $P(A)=\frac{|A|}{|\Omega|}=\frac{|A|}{\binom{65}{8}}$. [/mm]

Ich werde im Folgenden für die verschiedenen Ereignisse A immer nur $|A|$ angeben.
Ich gehe davon aus, dass du in der Lage bist, dies mittels eines Taschenrechners in die Formel (*) einzusetzen. Bei Schwierigkeiten bitte nochmal nachfragen.


> - 5 gleiche Zahlen

[mm] $|A|=13*\binom{65-5}{8-3}$. [/mm]


>  - 4 gleiche Zahlen

Wie ist dies genau gemeint? MINDESTENS eine Zahl soll MINDESTENS vierfach vertreten sein?
(D.h. sind folgende Situationen auch zugelassen?
i) Je zwei Zahlen sind vierfach vertreten.
ii) Eine Zahl ist fünffach vertreten.)

Ich gehe mal davon aus, wenn du mir diese Rückfrage beantwortest, klärt sich auch, wie du die restlichen Ereignisse meinst.


Viele Grüße
Tobias

Bezug
                
Bezug
Kartenhände: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:38 So 03.04.2016
Autor: civman

Hallo Tobias,

erst einmal vielen Dank für deine erste Antwort.

Mir geht es darum, die verschiedenen Ereignisse (Kartenhände) in eine Wertigkeit Reihenfolge zu bringen. Dabei sind die restlichen Karten egal, d.h. wenn es um die Wahrscheinlichkeit für einen Vierling geht, sind die anderen vier Karten egal. Sie können einen weiteren Vierling ergeben, aber genauso können es vier verschiedene Karten sein.

Normalerweise könnte ich die Reihenfolge von Texas Holdem übernehmen. Mein mathematisches "Bauchgefühl" warnt mich aber davor, da ich glaube, dass durch die fünfte Farbe z.B. die Wahrscheinlichkeit für eine Strasse jetzt höher ist als für einen Drilling.

LG
Thomas

Bezug
        
Bezug
Kartenhände: 4 gleiche Zahlen
Status: (Antwort) fertig Status 
Datum: 10:30 So 03.04.2016
Autor: tobit09

Jetzt wird es leider etwas komplex. Ich hoffe, mir ist kein Fehler unterlaufen.


>  - 4 gleiche Zahlen

Ich gehe davon aus, dass auch ein "Fünfling" zugelassen ist, da er insbesondere einen "Vierling" enthält.

[mm] $|A|=\binom{13}{2}*5*5+13*\binom{60}{3}+13*5*(\binom{60}{4}-12*5)$. [/mm]

Bezug
        
Bezug
Kartenhände: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 So 17.04.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]