matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikKarnaugh und QuineMcCluskey
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Aussagenlogik" - Karnaugh und QuineMcCluskey
Karnaugh und QuineMcCluskey < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Karnaugh und QuineMcCluskey: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Mi 03.11.2010
Autor: Zelos

Aufgabe
Gegeben sei die Funktion

f(a,b,c,d) := [mm] \overline{a}b\overline{c}d [/mm] + abcd + [mm] ab\overline{c}d [/mm] + [mm] \overline{a}bcd [/mm]
Vergleichen Sie Ihre Lösung von Teil b) mit dem Muster der eingetragenen Nullen und Einsen aus Teil a). Was fällt Ihnen auf?

Lösung Teil b): f(a,b,c,d) = bd (nach QuineMcCluskey)

Ich weiß hier nicht genau, was ich da schreiben sollte.
Ich soll also das Ergebnis (= bd) mit dem Muster dieser Tabelle hier vergleichen und sagen, was mir auffällt. Mir fällt aber gar nichts Besonderes auf. Was ist denn der Zusammenhang des Diagramms und der Lösung "bd"?

Die Tabelle ist diese hier (bevor ich mich daran totschreibe):
[Dateianhang nicht öffentlich]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Karnaugh und QuineMcCluskey: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Mi 03.11.2010
Autor: etoxxl

Wenn du dir die Tabelle genau anschaust,
dann merkst du, dass da ein 1er-Block ist, der aus 2x2 Kästchen besteht.
Wenn du dir anschaust für welche Variablen dieser Block auftaucht,
dann sieht man : b=1 und d=1, als bd.
Durch zusammenfassen solcher 1er-Blöcke und durch ablesen der dazugehörigen Variablen, die auf 1 gesetzt sind, da wo die Blöcke auftauchen, kann man lange logische Funktionen minimieren.
Wie man die Blöcke wählen darf, werdet ihr sicherlich noch lernen.
Wichtig ist aber auf jeden Fall, dass sie von der Größe [mm] 2^n [/mm] sind.

Bezug
                
Bezug
Karnaugh und QuineMcCluskey: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Mi 03.11.2010
Autor: Zelos

Also könnte ich als Antwort auf die Frage einfach sagen, dass die 1 am Ausgang auftritt, wenn b und d beide 1 sind, jedoch für sowohl a als auch c eine 1 auftaucht, egal ob 0 oder 1 sind, weshalb sie zum Ergebnis nichts beitragen... was dazu führt, dass sie aus dem Primterm von QuineMCCluskey rausfallen und "b und d" bleiben?

Bezug
                        
Bezug
Karnaugh und QuineMcCluskey: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Mi 03.11.2010
Autor: Schadowmaster

richtig, a und c sind absolut egal für das Ergebnis.
Das kannst du (vielleicht^^) auch sehen wenn du dir den längeren Term anguckst.
Es gibt vier Möglichkeiten für a und c:
$ac, [mm] a\overline{c}, \overline{a}c, \overline{a}\overline{c}$ [/mm]

Genau diese vier Möglichkeiten hast du in der langen Version von f, und sie sind immer mit bd (beide ohne Strich) verknüpft.
Das bedeutet egal welche der vier Möglichkeiten für ac du nun hast, es gibt immer einen Viererblock in dem genau diese Kombination mit bd zusammen drinnsteckt; also ist die Belegung von ac vollkommen irrelevant für die Lösung und du kannst sie einfach weglassen.
Aber vorsicht:
Sobald du sowas hast
f(a,b,c,d) := $ [mm] \overline{a}b\overline{c}d [/mm] $ + [mm] abc\red{\overline{d}} [/mm] + $ [mm] ab\overline{c}d [/mm] $ + $ [mm] \overline{a}bcd [/mm] $
geht es nicht mehr, da die ac's nicht mehr immer mit dem selben verknüpft sind -  sie sind also absolut nicht egal.^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]