matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikKapitalwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Finanzmathematik" - Kapitalwert
Kapitalwert < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kapitalwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Do 07.01.2016
Autor: Jops

Aufgabe
[mm] -300+\bruch{500}{q}+\bruch{300}{q^2}+\bruch{990}{q^3} [/mm]
q=i+1
Bei welchem Zinssatz i ist der Kap.wert max?


Habe leider keine genaue Vorstellung wie ich auf die Lösung komme, evtl durch ableiten?

        
Bezug
Kapitalwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Do 07.01.2016
Autor: Thomas_Aut

Hallo,

Für jedes $i>0$ wird der Wert der Brüche kleiner ...

Also ?

Lg

Bezug
                
Bezug
Kapitalwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 07.01.2016
Autor: Jops

Bei i min?

Bezug
                        
Bezug
Kapitalwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Do 07.01.2016
Autor: Thomas_Aut

Hallo,

Als ich deine Formel (soeben) kopieren wollte, sehe ich , dass sie eigentlich so

$ [mm] -300+\bruch{500}{q}+\bruch{300}{q^2}+\bruch{990}{q^3} [/mm] $

lauten sollte ?

also wie nun ?

Wie in deinem ersten Post, oder wie oben?

lg

Bezug
                                
Bezug
Kapitalwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Fr 08.01.2016
Autor: Jops

Entschuldigung, da ist mir wohl ein Fehler unterlaufen.
Die Formel wie du sie aufgeschrieben hast stimmt.

Bezug
                                        
Bezug
Kapitalwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Fr 08.01.2016
Autor: Jops

Aufgabe
Wie muss ich nun vorgehen um i zu bekomme?

Wie muss ich nun vorgehen um i zu bekomme?

Bezug
                                                
Bezug
Kapitalwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Fr 08.01.2016
Autor: chrisno

s.o. Welche Werte sind denn für i sinnvoll?

Bezug
                        
Bezug
Kapitalwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Fr 08.01.2016
Autor: chrisno


> Bei i min?

Was ist i? (nur zur Klarstellung)
Was ist dann der minimale Wert für i?

Bezug
                        
Bezug
Kapitalwert: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 Sa 09.01.2016
Autor: Thomas_Aut

Hallo,

Nun reden wir zumindest mal über den korrekten Term.
Ändert nix - jedes i>0 verringert den Wert.

Da i ein Zins ist, ist also was der kleinste Wert ? richtig : i=0 und bei i=0 erhältst du auch den maximalen Kapitalwert.


Lg

Bezug
        
Bezug
Kapitalwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Sa 09.01.2016
Autor: Jops

Also i ist der Zinssatz, da q=1+i ist i=q-1 oder?
Und wenn q>0 ist?
Wie komme ich rechnerisch auf eine Lösung?

Bezug
                
Bezug
Kapitalwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Sa 09.01.2016
Autor: chrisno

Annahme: es gibt keinen negativen Zinssatz also ist  $i [mm] \ge [/mm] 0$.
Da q = 1+i folgt $q [mm] \ge [/mm] 1$.
K(q) ist die Funktion, die den Kapitalwert in Abhängigkeit von q, und damit auch von i, angibt.
Untersuche K(q) auf Monotonie. Bequem geht das mit der ersten Ableitung.
Es folgt, dass K(q) streng monoton fällt.
Damit folgt, dass K(q) ein Maximum nur am Rand des Definitionsbereichs annehmen kann.
Der Rand des Definitionsbereichs ist ... und dort wird auch das Maximum angenommen.


Bezug
                        
Bezug
Kapitalwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 So 10.01.2016
Autor: Jops

Tut mir leid aber leider verstehe ich die ganze Aufgabe nicht ganz

Also muss ich nur die erste Ableitung bilden, um zu zeigen, dass die funktion streng monoton fällt


[mm] \bruch{-500}{q²}-\bruch{600}{q³}-\bruch{2970}{q^{4}} [/mm]

Soweit so gut
Nur wie mache ich jetzt weiter?

Bezug
                                
Bezug
Kapitalwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 So 10.01.2016
Autor: chrisno

Du weißt, dass q > 0. Was folgt für den ganzen Ausdruck, also K'(q)?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]