matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikKapitalabbau
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Finanzmathematik" - Kapitalabbau
Kapitalabbau < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kapitalabbau: Jahre bestimmen
Status: (Frage) beantwortet Status 
Datum: 18:35 Do 22.02.2007
Autor: luigi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Herr K. macht eine Erbschaft von 200 000€, die er zu6% Zinseszinsen anlegt. Jeweils am Jahresende entnimmt er 19586,79 €. Nach wie vielen Jahren ist sein Vermögen auf 100 000€ gesunken?
Formel: lg(en*i+r)-lg (Ko*i+r)/lgq
lg(100000*0,06+19586,79)-lg (200000*0,06+19586,79)/lg(1,06)=-3,6
Stimmt ja wohl nicht. Auch wenn ich Kapital vertausche komme ich auf etwa 3,6.
Wo liegt mein Fehler?
Danke

        
Bezug
Kapitalabbau: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Do 22.02.2007
Autor: Josef

Hallo luigi,



>  Herr K. macht eine Erbschaft von 200 000€, die er zu6%
> Zinseszinsen anlegt. Jeweils am Jahresende entnimmt er
> 19586,79 €. Nach wie vielen Jahren ist sein Vermögen auf
> 100 000€ gesunken?
>  Formel: lg(en*i+r)-lg (Ko*i+r)/lgq
>  lg(100000*0,06+19586,79)-lg
> (200000*0,06+19586,79)/lg(1,06)=-3,6
>  Stimmt ja wohl nicht. Auch wenn ich Kapital vertausche
> komme ich auf etwa 3,6.
>  Wo liegt mein Fehler?


Benutze doch die so genannte Sparkassenformel.

[mm]200.000*1,06^n - 19.586,79*\bruch{1,06^n -1}{0,06} = 100.000[/mm]

n = 20,863...


Viele Grüße
Josef

Bezug
                
Bezug
Kapitalabbau: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Do 22.02.2007
Autor: luigi

Bist du sicher, dass er 20 Jahre lang 19500€ abheben kann, dass wären ja fast 400 000€?

Bezug
                        
Bezug
Kapitalabbau: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Do 22.02.2007
Autor: Josef

Hallo luigi,

du hast recht. Ich habe mich verrechnet.

n = 10


Viele Grüße
Josef

Bezug
                                
Bezug
Kapitalabbau: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Do 22.02.2007
Autor: luigi

Wenn es dir nichts ausmacht, dann teil mir bitte die Formel für n mit. Da hab ich meine Schwierigkeiten. Danke


Bezug
                                        
Bezug
Kapitalabbau: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Do 22.02.2007
Autor: Josef

Hallo luigi,

ich zeige dir die Rechenschritte:


[mm]200.000*1,06^n - 19.586,79*\bruch{1,06^n -1}{0,06} = 100.000[/mm]

[mm] 200.000*1,06^n [/mm] - [mm] 324.446,5*(1,06^n [/mm] -1) = 100.000

[mm] 200.000*1,06^n [/mm] - [mm] 326.445,5*1,06^n [/mm] + 326.446,5 = 100.000

[mm] 1,06^n [/mm] *(200.000 - 326.446,5) = 100.000 - 326.446,5

[mm] 1,06^n*(-126.446,5) [/mm] = -226.446,5

[mm] 1,06^n [/mm] = 1,790848

n = 10


Viele Grüße
Josef


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]