matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikKapazität einer Kugel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Kapazität einer Kugel
Kapazität einer Kugel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kapazität einer Kugel: Frage
Status: (Frage) beantwortet Status 
Datum: 16:02 Mi 08.06.2005
Autor: Maiko

Hallo!

Ich habe eine Frage zu folgender Aufgabe:

Kapazität einer Kugel

Eine Metallkugel mit dem Radius R befindet sich im
Abstand a über einer unendlich ausgedehnten Metallplatte.
Zwischen Kugel und Platte befindet sich Luft.

Wie groß ist die Kapazität zwischen Kugel und Platte in pF?

Hinweis:
Der Kugelradius ist klein gegen den Abstand.
Verwenden Sie die üblichen Modelle und Näherungen.

Radius: R = 5.2 cm
Abstand: a = 12.2 cm

[Dateianhang nicht öffentlich]

Hier ist meine Lösung:
[Dateianhang nicht öffentlich]

Das Ergebnis solle direkt in pF aus dem Taschenrechner herauskommen. Das wurde uns gesagt. Soweit scheint die Dimension erstmal zu stimmen.

Könnte jmd. mal den Rechenweg kontrollieren und schauen, ob das ganze richtig ist? Ist die Anwendung des Spiegelungsprinzips hier richtig?

Warum kommt bei mir eine negative Kapazität raus? Normalerweise muss die positiv sein! Ich habe doch aber eigentlich mit den Vorzeichen richtig hantiert oder? Spannung = [mm] \phi_{0} [/mm] - [mm] \phi_{Kugeloberfläche} [/mm]

Bitte um Hilfe!

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kapazität einer Kugel: Rechnung richtig
Status: (Antwort) fertig Status 
Datum: 19:33 Mi 08.06.2005
Autor: leduart

Hallo Maiko
Deine Rechnung ist richtig:
Welches Vorzeichen du für die Spannung nimmst ist egal. Der Kondensator hat dieselbe Kapazität für neg und pos Q. Ich hätte geschrieben (nach dem Peil in der Skizze, [mm] U=\Phi [/mm] - [mm] \phi_{0} [/mm] bei pos Q. Aber C=Q/|U|
ist auch richtig. Deine Zahl hab ich nicht nachgerechnet. Ob das Ergebnis in pF oder F rauskommt kommt auf die Dimension von [mm] \epsilon [/mm] und r an.
Spiegelladung war ein sehr guter Ansatz. Ich weiss nur nicht ob ihr direkt [mm] \Phi(r) [/mm] angeben dürft oder über
[mm] \integral_{r}^{a} [/mm] {E(s)ds} gehen müsst und E über das Spiegeln berechnen sollt. Das Ergebnis ist dasselbe. Aber i.A. gilt das Spigelprinzip für [mm] \vec [/mm] E
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]