matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKann in Körper a+a=a gelten?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Kann in Körper a+a=a gelten?
Kann in Körper a+a=a gelten? < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kann in Körper a+a=a gelten?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Mi 10.12.2008
Autor: neuling_hier

Aufgabe
Sei K ein Körper, e das neutrale Element in K.

Gibt es ein [mm] a\in [/mm] K mit [mm] a\neq [/mm] e und a+a = a?

Hallo liebes Forum,

Für einen umfangreicheren Beweis brauche ich den Nachweis, daß in einem Körper K o.g. Aussage gilt. Ich bin mir dabei aber nichtmal sicher, ob dem wirklich so ist.

Meine Frage ist, ob es prinzipiell ein Element ungleich e in einem Koerper geben kann, das mit sich selbst addiert gleich bleibt? Aus welchem Körperaxiom kann man das ggf. folgern?

Danke!! :-)

        
Bezug
Kann in Körper a+a=a gelten?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 Mi 10.12.2008
Autor: Astor

Wie lautet die exakte Definition eines Körpers?
Das neutrale Element ist eindeutig.
Also gibt es kein Element a aus K mit a+a=a. Falls a ungleich e.
Bitte nachsehen in Definition eines Körpers.
Astor

Bezug
                
Bezug
Kann in Körper a+a=a gelten?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Mi 10.12.2008
Autor: neuling_hier

Hallo,

- Stimmt, war ein Denkfehler meinerseits. Eigentlich klar, wobei die Eindeutigkeit des neutralen Elementes (bzgl. Addition) ja nicht direkt in der Definition steht, sondern aus den Körper- bzw. Gruppenaxiomen gefolgert wird.

Man koennte auch im Falle [mm] a\in [/mm] K mit a + a = a und [mm] a\neq [/mm] e schreiben:

  a = a + a = a [mm] \cdot [/mm] 1 + a [mm] \cdot [/mm] 1 = a(1 + 1) [mm] \Rightarrow [/mm] 1 + 1 = 1 = 1 + 0, also 1 = 0

(Widerspruch, da 0 [mm] \neq [/mm] 1 (was auch leicht zu zeigen ist)).

Danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]