matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenKEttenregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - KEttenregel
KEttenregel < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

KEttenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Mo 28.09.2009
Autor: m4rio

[mm] (3x^4+5)^6 [/mm]

wie würde die kettenregel hier zuschlagen??


--->  exponenten nach vorne [mm] \(6(3x^4+5)(4 [/mm] * 3x)???

ist das so richtig???

        
Bezug
KEttenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mo 28.09.2009
Autor: schachuzipus

Hallo m4rio,

> [mm](3x^4+5)^6[/mm]
>  
> wie würde die kettenregel hier zuschlagen??
>  
>
> --->  exponenten nach vorne [mm] $6(3x^4+5)(\red{4\cdot{}3x})$ [/mm] ???

Das stimmt nicht ganz, du hast bei der äußeren Ableitung den Exponenten verschlabbert und dich bei der inneren Ableitung ziemlich vertan.

Die Ableitung von [mm] $z^6$ [/mm] lautet doch [mm] $6\cdot{}z^{\blue{5}}$ [/mm]

Und wie lautet denn die Ableitung von [mm] $3x^4+5$ [/mm] ?

> ist das so richtig???

Nicht ganz, neuer Versuch ...

Gruß

schachuzipus

Bezug
                
Bezug
KEttenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Mo 28.09.2009
Autor: m4rio

$ [mm] (3x^4+5)^6 [/mm] $

--> [mm] \(6(3x^4+5)^5 [/mm] * 3 .... ??


wenn das auch falsch ist, wäre es nett, wenn du schnell den richtigen schritt hinschreiben würdest, muss meine FOrmelsammlung vervollständigen und gerade langsam in panik....

Bezug
                        
Bezug
KEttenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Mo 28.09.2009
Autor: schachuzipus

Hallo nochmal,

> [mm](3x^4+5)^6[/mm]
>  
> --> [mm]\(6(3x^4+5)^5[/mm] [ok] * 3 .... ??

Nun, die äußere Ableitung stimmt, du musst nur noch das [mm] $6(3x^4+5)^5$ [/mm] mit der inneren Ableitung, also der Ableitung von [mm] $3x^4+5$ [/mm] multiplizieren.

Und die ist doch nicht schwer ...


> wenn das auch falsch ist, wäre es nett, wenn du schnell
> den richtigen schritt hinschreiben würdest, muss meine
> FOrmelsammlung vervollständigen und gerade langsam in
> panik....  

Der Ansatz stimmt schon, bringe es nur zu Ende, das schaffst du locker!

Nochmal formal: [mm] $f(x)=g(h(x))\Rightarrow f'(x)=g'(h(x))\cdot{}h'(x)$ [/mm]

Hier [mm] $g(h(x))=\left[h(x)\right]^{ \ 6}$ [/mm] und [mm] $h(x)=3x^4+5$ [/mm]

Nun aber ...

Gruß

schachuzipus


Bezug
                                
Bezug
KEttenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Mo 28.09.2009
Autor: m4rio

$ [mm] \(6(3x^4+5)^5 [/mm] $ * [mm] 12x^3..... [/mm] ??? :)

Bezug
                                        
Bezug
KEttenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mo 28.09.2009
Autor: schachuzipus

Hallo nochmal,

> [mm]\(6(3x^4+5)^5[/mm] * [mm]12x^3.....[/mm] ??? :) [daumenhoch]

Na bitte!

Gruß

schachuzipus


Bezug
                                                
Bezug
KEttenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Mo 28.09.2009
Autor: m4rio

yeahh... :D

hätte ich jetzt aber $ [mm] \(6(3x^4+5x)^5 [/mm] $....
müsste ich dann die innere Ableitung [mm] \(12x^3+5 [/mm] nach hinten stellen...?

Bezug
                                                        
Bezug
KEttenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Mo 28.09.2009
Autor: schachuzipus

Hallo nochmal,

> yeahh... :D
>
> hätte ich jetzt aber [mm]\(6(3x^4+5x)^5 [/mm]....
>  müsste ich dann
> die innere Ableitung [mm]\(12x^3+5[/mm] [stop] nach hinten stellen...?

Die innere Ableitung, also die Ableitung von [mm] $3x^4+5$, [/mm] ist [mm] $12x^3$ [/mm]

Da die Multiplikation in [mm] $\IR$ [/mm] kommutativ ist, ist es egal, ob du [mm] $6(3x^4+5)^5\cdot{}12x^3$ [/mm] oder [mm] $12x^3\cdot{}6(3x^4+5)^5$ [/mm] schreibst

Du kannst es allenfalls noch etwas zusammenfassen zu

[mm] $f'(x)=72x^3\cdot{}(3x^4+5)^5$ [/mm]

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]