matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenK-Schar Horner Sch. doppl. NSt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - K-Schar Horner Sch. doppl. NSt
K-Schar Horner Sch. doppl. NSt < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

K-Schar Horner Sch. doppl. NSt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 Do 05.06.2008
Autor: hase-hh

Aufgabe
Für welches k hat die Funktion eine doppelte Nullstelle?

[mm] f_{k}(x) [/mm] = [mm] \bruch{1}{3}x^3 +x^2 [/mm] +kx - [mm] \bruch{4}{3} [/mm]


Moin,

ich habe Probleme bei der Lösung der o.g. Aufgabe.

Zunächst suche ich die Nullstellen von [mm] f_{k}(x), [/mm] d.h. ich setze

[mm] f_{k}(x) [/mm]  = 0

0 =  [mm] \bruch{1}{3}x^3 +x^2 [/mm] +kx - [mm] \bruch{4}{3} [/mm]

0 = [mm] x^3 +3x^2 [/mm] +3kx -4  

Wenn die Funktion eine "doppelte" Nullstelle hat, hat sie auch eine einfache, die ich bei x=a  annehme...

Mithilfe des Horner Schemas erhalte ich

[mm] (x^3 +3x^2 [/mm] +3kx -4) :(x-a)

1 --- 3 ------ 3k ----------------- -4

        a --- [mm] 3a+a^2 [/mm] --------- [mm] 3ka+3a^2+a^3 [/mm]
1 --- 3+a --- [mm] 3a+a^2+3k [/mm] ---- [mm] 3ka+3a^2+a^3-4 [/mm] = 0


Restpolynom:  [mm] x^2 [/mm] + (3+a)*x [mm] +3k+3a+a^2 [/mm]        

Das setze ich gleich null...  um die zweite / dritte Nullstelle zu finden...

[mm] x^2 [/mm] + (3+a)*x [mm] +3k+3a+a^2 [/mm]  = 0

[mm] x_{1/2} [/mm] = - [mm] \bruch{3+a}{2} \pm \wurzel{(\bruch{3+a}{2})^2 - (3k+3a+a^2}) [/mm]

Zwei Ideen:

eine doppelte Nullstelle liegt vor, wenn

1. die Diskriminante =0 ist

2. eine weitere Lösung a ist.


zu 1.

0 = [mm] \bruch{9+6a+a^2-12k-12a-4a^2}{4} [/mm]

0 = [mm] -3a^2-6a+9 [/mm] -12k

0 = [mm] a^2 [/mm] +2a +4k

k =  [mm] \bruch{-a^2-2a+3}{4} [/mm]


zu 2.

- [mm] \bruch{3+a}{2} [/mm] + D = a

D = [mm] \bruch{3(a+1)}{2} [/mm]

=>  [mm] \wurzel{-3a^2-6a+9-12k} [/mm] = 3a+3     (Zählerbetrachtung)

[mm] -3a^2-6a-9-12k [/mm] = [mm] 9a^2 [/mm] +18a +9

-12k = [mm] 12a^2 [/mm] +24a +18

k = [mm] -a^2 [/mm] -2a [mm] -\bruch{3}{2} [/mm]


Stimmt das soweit? Gibt es vielleicht eine einfacherere Lösung?


Danke für eure Hilfe!

Gruß
Wolfgang



        
Bezug
K-Schar Horner Sch. doppl. NSt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Do 05.06.2008
Autor: ardik

Hallo hase-hh,

> Stimmt das soweit?

Beim Drüberschauen finde ich keinen Fehler. Gründlich nachgerechnet habe ich's freilich nicht.
Dummerweise hängt ja immer noch das a da rum.

> Gibt es vielleicht eine einfacherere Lösung?

Alternatividee:

Die Extrempunkte bestimmen.
Und dann k so wählen, dass die y-Koordinate jeweils eines Extrempunktes gleich null wird.
Ob das letzlich einfacher wird, überschaue ich jetzt nicht, aber zumindest muss man sich nicht mit der zusätzlichen Unbekannten rumschlagen.

Schöne Grüße
 ardik

Bezug
                
Bezug
K-Schar Horner Sch. doppl. NSt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:31 Do 05.06.2008
Autor: Nicodemus

Hallo Hase-hh!

Kleiner Tipp: Wenn ein Polynom eine doppelte Nullstelle hat, dann hat auch die Ableitung diese Nullstelle!

Bezug
        
Bezug
K-Schar Horner Sch. doppl. NSt: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Fr 06.06.2008
Autor: Nicodemus

Da wie erwähnt auch die Ableitung eine Nullstelle hat, muss gelten
f' [mm] (x)=x^2+2x+k [/mm]
Wie man sieht hat f'(x) für k=0 zwei Nullstellen nämlich x = 0 und x = -2.
x=0 scheidet als dopplete Nullstelle aus, somit bleibt x=-2.
Dass dies die Lösung ist, erkennt man durch Einsetzen oder Rechnung mit dem Hornerschema!

Bezug
        
Bezug
K-Schar Horner Sch. doppl. NSt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:31 Fr 06.06.2008
Autor: Martinius

Moin hase-hh,

Du hast die beiden Gleichungen:

I  [mm] $f(x)=\bruch{1}{3}x^3+x^2+kx=\bruch{4}{3}$ [/mm]

II [mm] $f'(x)=x^2+2x+k=0$ [/mm]

Aus der II. gewinnst Du dein x in Abhängigkeit von k:

[mm] $x_{1,2}=-1\pm\wurzel{1-k}$ [/mm]

welches Du in I einsetzt:

[mm] $\bruch{1}{3}(-1\pm\wurzel{1-k})^3+(-1\pm\wurzel{1-k})^2+k(-1\pm\wurzel{1-k})-\bruch{4}{3}=0$ [/mm]

[mm] $k^3-\bruch{3}{4}k^2+6k=0$ [/mm]

Da gibt es nur eine reelle Lösung:

k = 0


LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]