matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenJordansche Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Jordansche Normalform
Jordansche Normalform < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordansche Normalform: Berechnung
Status: (Frage) beantwortet Status 
Datum: 13:58 Sa 21.06.2014
Autor: YuSul

Aufgabe
Berechnen Sie eine Jordansche Normalform der folgenden Matrix:

[mm] $A=\begin{pmatrix} 0&-1&-1\\0&2&-1\\1&1&2\end{pmatrix}\in\mathbb{C}^{3\times 3}$ [/mm]

Hi,

ich habe eine Frage zu der Berechnung der Jordanschen Normalform.
Also zu erst benötige ich ja die Eigenwerte der Matrix.
Als charakteristisches Polynom erhalte ich:

[mm] $\chi_A(\lambda)=-\lambda^3+4\lambda^2-6\lambda+3$ [/mm]

Als Eigenwerte erhalte ich

[mm] $\lambda_1=1$ [/mm]

[mm] $\lambda_2=\frac{3}{2}+i\frac{\sqrt{3}}{2}$ [/mm]

[mm] $\lambda_3=\frac{3}{2}-i\frac{\sqrt{3}}{2}$ [/mm]

Also komplexe. Ich hoffe ich habe mich beim charakteristischem Polynom nicht verrechnet.

Wie geht es nun weiter?

Vielen Dank im voraus.

mfg



        
Bezug
Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Sa 21.06.2014
Autor: Thomas_Aut

Hallo,

> Berechnen Sie eine Jordansche Normalform der folgenden
> Matrix:
>  
> [mm]A=\begin{pmatrix} 0&-1&-1\\0&2&-1\\1&1&2\end{pmatrix}\in\mathbb{C}^{3\times 3}[/mm]
>  
> Hi,
>  
> ich habe eine Frage zu der Berechnung der Jordanschen
> Normalform.
> Also zu erst benötige ich ja die Eigenwerte der Matrix.
> Als charakteristisches Polynom erhalte ich:
>  
> [mm]\chi_A(\lambda)=-\lambda^3+4\lambda^2-6\lambda+3[/mm]

Das stimmt.

>  
> Als Eigenwerte erhalte ich
>
> [mm]\lambda_1=1[/mm]
>  
> [mm]\lambda_2=\frac{3}{2}+i\frac{\sqrt{3}}{2}[/mm]
>  
> [mm]\lambda_3=\frac{3}{2}-i\frac{\sqrt{3}}{2}[/mm]
>  
> Also komplexe. Ich hoffe ich habe mich beim
> charakteristischem Polynom nicht verrechnet.

Nein hast du nicht, auch deine Eigenwerte sind richtig.

>  
> Wie geht es nun weiter?
>  
> Vielen Dank im voraus.
>
> mfg

Du weißt (nehme ich an) wie eine JNF aussehen soll? Was weißt du über die algebraische Vielfachheit deiner Nullstellen?

Gruß Thomas

Ps: Willst du eine komplexe oder reelle JNF bestimmen?

>  
>  


Bezug
                
Bezug
Jordansche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Sa 21.06.2014
Autor: YuSul

Ja, die Jordan Normalform ist eine 3x3 Matrix die nur Einträge auf der Diagonalen hat und sonst überall Nullen.
Die algebraische Vielfachheit meiner Nullstellen ist jeweils 1.

Bezug
                        
Bezug
Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Sa 21.06.2014
Autor: Thomas_Aut


> Ja, die Jordan Normalform ist eine 3x3 Matrix die nur
> Einträge auf der Diagonalen hat und sonst überall
> Nullen.
>  Die algebraische Vielfachheit meiner Nullstellen ist
> jeweils 1.

Das ist nicht exakt. Sie hat als Diagonaleinträge die entsprechenden Eigenwerte - diese haben bei dir alle Vielfachheit 1(Somit haben alle Jordanblöcke die Größe 1) - also du kannst eine komplexe JNF sofort anschreiben.

Gruß Thomas


Bezug
                                
Bezug
Jordansche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Sa 21.06.2014
Autor: YuSul

Dann ist meine Jordan Normalform also einfach:


[mm] $J=\begin{pmatrix}1&0&0\\0&\frac{3}{2}+i\frac{\sqrt{3}}{2}&0\\0&0&\frac{3}{2}-i\frac{\sqrt{3}}{2}\end{pmatrix}$ [/mm]

?

Bezug
                                        
Bezug
Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Sa 21.06.2014
Autor: Thomas_Aut

Ja!

Bezug
                                                
Bezug
Jordansche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Sa 21.06.2014
Autor: YuSul

Und wenn die algebraische Vielfachheit nicht 1 ist, dann muss ich doch irgendwas mit dem Minimalpolynom machen, oder?

Könntest du auch noch einmal anreißen wofür die Jordan Normalform so wichtig ist, und was man alles mit ihr anstellen kann?

Bezug
                                                        
Bezug
Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 21.06.2014
Autor: fred97


> Und wenn die algebraische Vielfachheit nicht 1 ist, dann
> muss ich doch irgendwas mit dem Minimalpolynom machen,
> oder?
>  
> Könntest du auch noch einmal anreißen wofür die Jordan
> Normalform so wichtig ist, und was man alles mit ihr
> anstellen kann?

Schau da mal rein

http://www.danielwinkler.de/la/jnfkochrezept.pdf

FRED


Bezug
        
Bezug
Jordansche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 Sa 21.06.2014
Autor: YuSul

Danke für den Link.

Heißt das, dass wenn ich die Jordan Normalform bestimme und ich erhalte, dass die algebraische Vielfachheit der Eigenwerte alle 1 ist, dann bin ich direkt fertig. Wenn jedoch die algebraische Vielfachheit nicht immer 1 ist muss ich noch weiterrechnen?

Bezug
                
Bezug
Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 06:29 So 22.06.2014
Autor: angela.h.b.


> Danke für den Link.
>  
> Heißt das, dass wenn ich die Jordan Normalform bestimme
> und ich erhalte, dass die algebraische Vielfachheit der
> Eigenwerte alle 1 ist, dann bin ich direkt fertig. Wenn
> jedoch die algebraische Vielfachheit nicht immer 1 ist muss
> ich noch weiterrechnen?

Hallo,

ja, wenn Du eine [mm] n\times [/mm] n-Marix hast mit n verschiedenen Eigenwerten, die dann die Vielfachheit 1 haben, dann weißt Du, daß die JNF eine Diagonalmatrix mit den Eigenwerten auf der Diagonalen ist.

Andernfalls mußt Du weiterrechnen.

LG Angela


Bezug
                        
Bezug
Jordansche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 So 22.06.2014
Autor: YuSul

Okay, und die "Reihenfolge" wie ich die Eigenwerte am Ende auf die Diagonale verteile ist egal. Gehe ich mal von aus.

Bezug
                                
Bezug
Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 06:20 Mo 23.06.2014
Autor: angela.h.b.


> Okay, und die "Reihenfolge" wie ich die Eigenwerte am Ende
> auf die Diagonale verteile ist egal. Gehe ich mal von aus.

Hallo,

ja, im Prinzip ist das egal.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]