matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenJordan Messbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Jordan Messbarkeit
Jordan Messbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan Messbarkeit: Verständnisproblem Definition
Status: (Frage) beantwortet Status 
Datum: 18:18 Sa 14.07.2012
Autor: halonol

Hallo,

ich brauche Hilfe bei dem Verstehen einer Definition:

Definition: Sei D [mm] \subset \IR^n [/mm] beschränkt und [mm] f:D->\IR [/mm] auch beschränkt. Wir nennen f auf D integrierbar, wenn die Funktion [mm] f^\*:=f*1_D [/mm] auf [mm] Q_D [/mm] integrierbar ist. Dabei ist [mm] Q_D [/mm] der kleinste achsenparallele Quader und [mm] f(n)=\begin{cases} f, & \mbox{für } x \in Q \mbox{ } \\ 0, & \mbox{für } x \in Q_D \mbox{ohne D} \end{cases}. [/mm]

Was ist den der kleinste achsenparallele Quader?

Dann die Definition zur Jordan Messbarkeit:
Definition: Eine beschränkte Menge D [mm] \subset \IR^n [/mm] heißt Jordan messbar, wenn das Integral [mm] \mu(D):= \integral_{D}{1^\* dx}=\integral_{Q_D}{1^\* dx} [/mm] mit [mm] 1^\*:=1*1_D=1_D [/mm] existiert. Die Zahl [mm] \mu(D) [/mm] heißt Inhalt oder Volumen von D.

Was ist dieses [mm] 1_D? [/mm] Kann mir jemand vielleicht ein Beispiel geben zu einer Jordan messbaren Menge und dies an dieser Definition beweisen?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://matheplanet.com/

        
Bezug
Jordan Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Sa 14.07.2012
Autor: fred97


> Hallo,
>  
> ich brauche Hilfe bei dem Verstehen einer Definition:
>  
> Definition: Sei D [mm]\subset \IR^n[/mm] beschränkt und [mm]f:D->\IR[/mm]
> auch beschränkt. Wir nennen f auf D integrierbar, wenn die
> Funktion [mm]f^\*:=f*1_D[/mm] auf [mm]Q_D[/mm] integrierbar ist. Dabei ist
> [mm]Q_D[/mm] der kleinste achsenparallele Quader und
> [mm]f(n)=\begin{cases} f, & \mbox{für } x \in Q \mbox{ } \\ 0, & \mbox{für } x \in Q_D \mbox{ohne D} \end{cases}.[/mm]
>  
> Was ist den der kleinste achsenparallele Quader?


Das ist der Durchschnitt aller achsenparallele Quader, die D enthalten.


>  
> Dann die Definition zur Jordan Messbarkeit:
>  Definition: Eine beschränkte Menge D [mm]\subset \IR^n[/mm] heißt
> Jordan messbar, wenn das Integral [mm]\mu(D):= \integral_{D}{1^\* dx}=\integral_{Q_D}{1^\* dx}[/mm]
> mit [mm]1^\*:=1*1_D=1_D[/mm] existiert. Die Zahl [mm]\mu(D)[/mm] heißt
> Inhalt oder Volumen von D.
>
> Was ist dieses [mm]1_D?[/mm]


[mm] 1_D(x)=1, [/mm] falls x [mm] \in [/mm] D, [mm] 1_D(x)=0, [/mm] falls x [mm] \notin [/mm] D

FRED

> Kann mir jemand vielleicht ein Beispiel
> geben zu einer Jordan messbaren Menge und dies an dieser
> Definition beweisen?
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  http://matheplanet.com/


Bezug
                
Bezug
Jordan Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Sa 14.07.2012
Autor: halonol

Ersteres verstehe ich noch nicht ganz:

Der Definitionsbereich sind ja n-Tupel. Achsenparalelle Quader sind n Intervalle: Zum Beispiel: [mm] [a_1,b_1]x[a_2,b,2]x[a_3,b_3] [/mm] für den [mm] R^3. [/mm] Diese Intervalle kann ich doch nun beliebig klein wählen, ich muss nur gewähleisten, dass immer der Definitionsbereich in jedem Teilintervall meines Quaders liegt. Wäre der Durchschnitt dann nicht immer gleich dem Definitionsbereich?

Bezug
                        
Bezug
Jordan Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mo 16.07.2012
Autor: SEcki


> Der Definitionsbereich sind ja n-Tupel.

Wie meinst du das?

> Achsenparalelle
> Quader sind n Intervalle: Zum Beispiel:
> [mm][a_1,b_1]x[a_2,b,2]x[a_3,b_3][/mm] für den [mm]R^3.[/mm] Diese
> Intervalle kann ich doch nun beliebig klein wählen, ich
> muss nur gewähleisten, dass immer der Definitionsbereich
> in jedem Teilintervall meines Quaders liegt. Wäre der
> Durchschnitt dann nicht immer gleich dem
> Definitionsbereich?  

Wieso? Was ist wenn D eine Kugel ist?

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]