matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikJährliche Rendite
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Finanzmathematik" - Jährliche Rendite
Jährliche Rendite < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jährliche Rendite: Jährliche Rendite des Dax
Status: (Frage) beantwortet Status 
Datum: 12:45 Do 24.02.2011
Autor: Blueblackberry

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo erstmal!

ich habe eine Frage zur jährlichen Rendite eines 12-Jahres Engagements in den Dax und zwar geht es dabei um eine ratierliche Anlage, von jeweils 1200 € im Jahr. Ist es möglich für jedes Jahr einzeln die jährliche Rendite zu berechnen (ich weiss wie das geht) und dann diese Renditen zusammenrzurechnen und einfahc durch 12 zu teilen, um so die jährliche Rendite über die gesamte Laufzeit von 12 Jahren zu errechnen?

Vielen Dank

        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Do 24.02.2011
Autor: M.Rex

Hallo und [willkommenmr]




> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo erstmal!
>  
> ich habe eine Frage zur jährlichen Rendite eines 12-Jahres
> Engagements in den Dax und zwar geht es dabei um eine
> ratierliche Anlage, von jeweils 1200 € im Jahr. Ist es
> möglich für jedes Jahr einzeln die jährliche Rendite zu
> berechnen (ich weiss wie das geht) und dann diese Renditen
> zusammenrzurechnen und einfahc durch 12 zu teilen, um so
> die jährliche Rendite über die gesamte Laufzeit von 12
> Jahren zu errechnen?
>  
> Vielen Dank

Mit deiner Berechnung bekommst du in der Tat eine Rendite heraus, allerdings die Durchschnittsrednite in den 12 Jahren.

Marius


Bezug
                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Do 24.02.2011
Autor: Blueblackberry

Im Endeffekt möchte ich darauf hinaus, die Ablaufrendite der deutschen Lebensversicherung mit deinem Engangement in den Dax zu vergleichen, um herauszufinden welche der beiden Alternativen rentabler ist. Macht es da Sinn diesen Durchschnitt der jährlichen Rendite des DAX mit der Ablaudrendite der Lebensversicherung zu vergleichen?

Bezug
                        
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Do 24.02.2011
Autor: Blueblackberry

Vielleicht komme ich weiter, wenn ich weiss wie sich die Ablaufrendite berechnet...dazu finde ich leider auch keine Literatur in Bibliothekn oder Seiten im Internet. Ich habe aber ein Beispiel:
Bei einem jährlich vorschüssigen Beitrag von 1200 € beläuft sich die Ablaufleistung 2010 nach 30 Jahren im Marktdurchschnitt auf 86.626 €, das entspricht einer Ablaufrendite von 5,19%.

Weiss jemand man auf diese 5,19% kommt?

Bezug
                                
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Do 24.02.2011
Autor: Josef

Hallo,

> Vielleicht komme ich weiter, wenn ich weiss wie sich die
> Ablaufrendite berechnet...dazu finde ich leider auch keine
> Literatur in Bibliothekn oder Seiten im Internet. Ich habe
> aber ein Beispiel:
>  Bei einem jährlich vorschüssigen Beitrag von 1200 €
> beläuft sich die Ablaufleistung 2010 nach 30 Jahren im
> Marktdurchschnitt auf 86.626 €, das entspricht einer
> Ablaufrendite von 5,19%.
>  
> Weiss jemand man auf diese 5,19% kommt?



Der Ansatz lautet:

[mm] 1.200*q*\bruch{q^{30}-1}{q-1} [/mm] = 86.626


Viele Grüße
Josef


Bezug
                                        
Bezug
Jährliche Rendite: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Do 24.02.2011
Autor: Blueblackberry

q steht für 1+i, oder?

Dann kommt bei mir da 86.652,81 raus?

Bezug
                                                
Bezug
Jährliche Rendite: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Do 24.02.2011
Autor: Josef

Hallo,

> q steht für 1+i, oder?
>  

[ok]

Damit lässt es sich leichter rechnen!


> Dann kommt bei mir da 86.652,81 raus?



[ok]

Rundungsfehler

q = 1,0518832018218...


Viele Grüße
Josef

Bezug
                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Do 24.02.2011
Autor: Josef

Hallo,

> Im Endeffekt möchte ich darauf hinaus, die Ablaufrendite
> der deutschen Lebensversicherung mit deinem Engangement in
> den Dax zu vergleichen, um herauszufinden welche der beiden
> Alternativen rentabler ist. Macht es da Sinn diesen
> Durchschnitt der jährlichen Rendite des DAX mit der
> Ablaudrendite der Lebensversicherung zu vergleichen?


Du musst die jährlichen Renditen vergleichen.


Viele Grüße
Josef

Bezug
                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Do 24.02.2011
Autor: Blueblackberry

Also ein Vergleich der Ablaufrendite der Lebensversicherung mit der jährlichen Rendite des Dax. Stimmt das so?

Bezug
                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Do 24.02.2011
Autor: Josef

Hallo,

> Also ein Vergleich der Ablaufrendite der Lebensversicherung
> mit der jährlichen Rendite des Dax. Stimmt das so?


Die jährliche eff. Rendite entspricht der Ablaufrendite. Sie ist zugleich eine Vergleichsmöglichkeit zur jährlichen Rendite des DAX.




Viele Grüße
Josef

Bezug
        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Do 24.02.2011
Autor: Josef

Hallo Blueblackberry,


>  
> ich habe eine Frage zur jährlichen Rendite eines 12-Jahres
> Engagements in den Dax und zwar geht es dabei um eine
> ratierliche Anlage, von jeweils 1200 € im Jahr. Ist es
> möglich für jedes Jahr einzeln die jährliche Rendite zu
> berechnen (ich weiss wie das geht) und dann diese Renditen
> zusammenrzurechnen und einfahc durch 12 zu teilen, um so
> die jährliche Rendite über die gesamte Laufzeit von 12
> Jahren zu errechnen?
>  


Die jährliche Rendite [mm] i_{eff} [/mm]  errechnet sich nach


[mm] \bruch{q^{12}-1}{q-1} [/mm] = [mm] \bruch{K_n}{1.200} [/mm]


Viele Grüße
Josef


Bezug
                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Do 24.02.2011
Autor: Blueblackberry

Wenn ich beispielsweise 2 Jahre lang, jeweils pro Jahr 1200€ in den dax investieren möchte.

Zum Investitionszeitpunkt am 01.01.1999 steht der Dax bei 5180,29 Punkten, Ende des Jahres bei 6835,6 Punkten. Anfang 2000 dann wieder bei 6835,6 Punkten und Ende des Jahres bei 6795,14 Punkten. Dann ist die jährliche Rendite (gewinn: eingesetztes Kapital -1) im ersten Jahr 2,63%, im zweiten Jahr 0,32%. Kann ich dann diese beiden Renditen addieren und einfach durch 2 teilen, um so meinen Wert zu bekommen, den ich mit der Ablaufrendite der Lebensversicherung vergleichen kann?

Bezug
                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Do 24.02.2011
Autor: Josef

Hallo,

> Wenn ich beispielsweise 2 Jahre lang, jeweils pro Jahr
> 1200€ in den dax investieren möchte.
>  
> Zum Investitionszeitpunkt am 01.01.1999 steht der Dax bei
> 5180,29 Punkten, Ende des Jahres bei 6835,6 Punkten. Anfang
> 2000 dann wieder bei 6835,6 Punkten und Ende des Jahres bei
> 6795,14 Punkten. Dann ist die jährliche Rendite (gewinn:
> eingesetztes Kapital -1) im ersten Jahr 2,63%, im zweiten
> Jahr 0,32%. Kann ich dann diese beiden Renditen addieren
> und einfach durch 2 teilen, um so meinen Wert zu bekommen,
> den ich mit der Ablaufrendite der Lebensversicherung
> vergleichen kann?




Der Steigerungssatz i bei Kursen von Aktien werden normalerweise ermittelt:

i = [mm] \bruch{Wert - Vorwert}{Vorwert} [/mm]

Der durchschnittliche Prozentsatz wird gebildet, indem der geometrische Mittelwert der Steigerungsfaktoren errechnet wird.

Beispiel:

2009: i = 1,10
2010: i = 1,05
2011: i = 1,08
durchschnittliche jährliche eff. Verzinsung:

[mm] \wurzel[3]{1,10*1,05*1,08} [/mm] = 1,07646 = 7,645 %

Viele Grüße
Josef

Bezug
                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Do 24.02.2011
Autor: Blueblackberry

Wow ok vielen Dank. Das hilft schonmal. Vllt. kann ich mein Beispiel vorrechnen, um sicher zu gehen, dass ich es verstanden habe.

1999: i= ((6835,6/5180,29)/5180,29)=0,3195 (sind das Prozent?)

2000: i= (( 6795,14/6835,6)/6835,6)= ,00014543 ~ 0

Durchschnittliche effektive Verzinsung:
Wurzel aus 0,3195 * 0

Irgendwas stimmt da nicht :/


Bezug
                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Do 24.02.2011
Autor: Josef

Hallo,

> Wow ok vielen Dank. Das hilft schonmal. Vllt. kann ich mein
> Beispiel vorrechnen, um sicher zu gehen, dass ich es
> verstanden habe.
>  
> 1999: i= ((6835,6/5180,29)/5180,29)=0,3195 (sind das
> Prozent?)
>  


du hast richtig gerechnet.

0,3195 * 100 = 31,95 %



> 2000: i= (( 6795,14/6835,6)/6835,6)= ,00014543 ~ 0
>  
> Durchschnittliche effektive Verzinsung:
>  Wurzel aus 0,3195 * 0
>  


  
[mm] \bruch{6.795,14 - 6.835,6}{6.835,6} [/mm] = - 0,005919 * 100 = - 0,5919 %

wegen 1+i = 1-0,005919 = 0,994081


durchschnittliche Verzinsung:

[mm] \wurzel{1,31951*0,994081}-1 [/mm] = 0,14529 * 100 = 14,529 %


Viele Grüße
Josef

Bezug
                                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Do 24.02.2011
Autor: Blueblackberry

Ok. Entspricht der Steigungssatz i (wert-vorwert: vorwert) dann der jährlichen Rendite?

Ich hatte die jährliche Rendite zuvor anders berechnet: Und zwar mit dem (Gewinn: eingesetztes Kapital) -1 bezogen auf die Laufzeit. Berechnet man damit dann was anderes?

Bei der Formel des Steigerungssatzes i benötigt man aber gar kein Einsatzkapitel, ist das also Kapitalunabhängig?

Bezug
                                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Fr 25.02.2011
Autor: Josef

Hallo,

> Ok. Entspricht der Steigungssatz i (wert-vorwert: vorwert)
> dann der jährlichen Rendite?
>

Ja. Rendite = i*100


In deinem angegebenen Beispiel kann man nur rechnen, wenn die Aktien zum 1.1. eines Jahres gekauft und zum 31.12. des Jahres verkauft werden. So kannst du die jährliche Rendite ermitteln. Erfolgen die Aktienkäufe und -verkäufe täglich, dann musst du natürlich die täglichen Renditen ermitteln. Dies geschieht mit der gleichen Formel.
Die Renditen sind mit Excel leicht zu berechnen.

Besonders leicht kann die Rendite bei Fonds ermittelt werden.


> Ich hatte die jährliche Rendite zuvor anders berechnet:
> Und zwar mit dem (Gewinn: eingesetztes Kapital) -1 bezogen
> auf die Laufzeit. Berechnet man damit dann was anderes?
>

Es gibt verschiedene Renditeberechnungen. Für Aktien hat sich die o.g. Berechnung im wesentlichen durchgesetzt.

> Bei der Formel des Steigerungssatzes i benötigt man aber
> gar kein Einsatzkapitel, ist das also Kapitalunabhängig?

[ok]


Hierbei werden die jeweiligen Kurse zugrunde gelegt.

Eine kleine Einarbeitung "Vom Kurs zur Rendite" vermittelt dir das Buch "Finanzmathematik für Einsteiger" 2. Auflage; Moritz Adelmeyer - Elke Warmuth; Vierweg+Teubner; ISBN 978-3-528-13185-2.

Auch das Buch "Praktische Finanzmathematik" von Andreas Pfeifer; Verlag Harri Deutsch; Seite 19 ff.; 3. Auflage, ISBN 3-8171-1736-1: vermittelt einen kleinen Einblick in die Thematik "Steigerungssatz und Prozentpunkte bei Aktienkurse.


Bevor du dir diese Bücher anschaffst, solltest du jedoch eine Probelesung in der Bücherei oder Buchhandlung vornehmen, ob sie deinen Vorstellungen entsprechen.



Bezug
                                                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Fr 25.02.2011
Autor: Blueblackberry

Die Bücher gibt es in nahen Bibliotheken, vielen Dank für die Empfehlung!

Ich bin jetzt nur etwas verwirrt, dass die jährliche Rendite nach "deiner" Berechnung nicht genauso hoch ist wie bei meiner Berechnung. Weil theoretisch sollte ja bei beiden Methoden dasselbe rauskommen.

Wenn man zum 01.01.1999 1200 € in den DAX zu einem Kurs von 5180,29 investiert, der DAX Steigt inner halb des Jahres auf 6835,60 zum 31.12 dann hat man 1639,48€. Die Gesamtrendite entspricht dann (1639,48€:1200€)-1 und die jährliche Rendite war dann 2,63%, also die 12.Wurzel aus 1639,48:1200 -1.

Mit deiner Methode des Steigerungssatzes kommt man dagegen auf eine jährliche Rendite von 31,95%.

Ich denke mal, dass meine Rechnung mit den 2,63% falsch ist?



Bezug
                                                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Fr 25.02.2011
Autor: Josef

Hallo,


>  
> Ich bin jetzt nur etwas verwirrt, dass die jährliche
> Rendite nach "deiner" Berechnung nicht genauso hoch ist wie
> bei meiner Berechnung. Weil theoretisch sollte ja bei
> beiden Methoden dasselbe rauskommen.
>  
> Wenn man zum 01.01.1999 1200 € in den DAX zu einem Kurs
> von 5180,29 investiert, der DAX Steigt inner halb des
> Jahres auf 6835,60 zum 31.12 dann hat man 1639,48€. Die
> Gesamtrendite entspricht dann (1639,48€:1200€)-1 und
> die jährliche Rendite war dann 2,63%, also die 12.Wurzel
> aus 1639,48:1200 -1.
>

ein kleiner Fehler. 12. Wurzel = für 12 Jahre
für ein Jahr gilt:

1.200*q = 1.639,48


q = [mm] \bruch{1.639,48}{1.200} [/mm]

q = 1,3662333...

p = 36,62 %



> Mit deiner Methode des Steigerungssatzes kommt man dagegen
> auf eine jährliche Rendite von 31,95%.
>  


Du musst beim Vergleich immer die gleiche Berechnungsmethode anwenden.


[mm] \bruch{1.639,48 - 1.200}{1.200} [/mm] = 0,3662333 * 100 = 36,62 %


>Ich denke mal, dass meine Rechnung mit den 2,63% falsch ist?

Mach die Probe:

1.200 * 1,0263 =


Viele Grüße
Josef





Bezug
                                                                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Fr 25.02.2011
Autor: Blueblackberry

Aber was ist denn nun die jährliche Rendite die 31,95% oder die 36,62%?


Bezug
                                                                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Fr 25.02.2011
Autor: Josef

Hallo,

> Aber was ist denn nun die jährliche Rendite die 31,95%
> oder die 36,62%?
>  


Das ist das Problem bei den verschiedenen Renditeberechnungen. Welche Rechenart richtig ist, darüber wird in der Fachliteratur noch heftig gestritten.

Ich bevorzuge die Renditeberechnung mit den tatsächlich vorhandenen Vorgaben. Anfangskapital 1.2000, Endkapital 1.639,48, Laufzeit in n Jahren.

Also:

i = [mm] \wurzel[n]{\bruch{K_n}{K_0}} [/mm]


Damit liegst du schon sehr richtig.

Die andere Berechnung ist hauptsächlich für die Ermittlung von Tagesrenditen gedacht.


Viele Grüße
Josef

Bezug
                                                                                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Fr 25.02.2011
Autor: Blueblackberry

Hm das verstehe ich nicht, nach dieser Formel ist die Rendite weder 31,95 noch 36,62, sondern doch die 2,63 die ich zuerst hatte?

Also kann ich einfach für alle 12 Jahre nach dieser Formel, die du gerade aufgeschrieben hast, die jährliche Rendite berechnen und dann mit der 12.Wurzel aus diesen i+1 jeweils mal genommen die durchschnittl. effek. Verzinsung berechnen.

Dann müsste es stimmen, oder?

Bezug
                                                                                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Fr 25.02.2011
Autor: Josef

Hallo,

> Hm das verstehe ich nicht, nach dieser Formel ist die
> Rendite weder 31,95 noch 36,62,

Dies Berechnung mit dieser Formel ist ja nur für ein Jahr, bzw. nur für eine Kursdiverenz gedacht.

> sondern doch die 2,63 die
> ich zuerst hatte?
>  

Dann gib doch mal deine Zahlen (Anfangskapital und Endkapital und Laufzeit) an.

> Also kann ich einfach für alle 12 Jahre nach dieser
> Formel, die du gerade aufgeschrieben hast, die jährliche
> Rendite berechnen und dann mit der 12.Wurzel aus diesen i+1
> jeweils mal genommen die durchschnittl. effek. Verzinsung
> berechnen.
>  
> Dann müsste es stimmen, oder?

[ok]



Viele Grüße
Josef

Bezug
                                                                                                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Fr 25.02.2011
Autor: Blueblackberry

01.01.1999 Anfangskapital 1200€, Endkapital zum 31.12.1999 1639,48€ macht eine Gesamtrendite von 36,62% und eine jährliche Rendite von 2,63%.

01.01.2000 Anfangskapital erneut 1200€, Endkapital zum 31.12.2000 sind 1242,46€ macht eine Gesamtrendite von 3,54%, macht eine jährliche Rendite von 0,32%.

Und das für alle weiteren 10 Jahre und am Ende dann dir durchschnittliche effektive Verzinsung berechnen mit allen 12 (i+1) malgenommen.

Ich habs auch als Excel-Sheet, falls das übersichtlicher ist?

Bezug
                                                                                                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Fr 25.02.2011
Autor: Josef

Hallo,

> 01.01.1999 Anfangskapital 1200€, Endkapital zum
> 31.12.1999 1639,48€ macht eine Gesamtrendite von 36,62%
> und eine jährliche Rendite von 2,63%.
>  
> 01.01.2000 Anfangskapital erneut 1200€, Endkapital zum
> 31.12.2000 sind 1242,46€ macht eine Gesamtrendite von
> 3,54%, macht eine jährliche Rendite von 0,32%.
>  
> Und das für alle weiteren 10 Jahre und am Ende dann dir
> durchschnittliche effektive Verzinsung berechnen mit allen
> 12 (i+1) malgenommen.
>  
> Ich habs auch als Excel-Sheet, falls das übersichtlicher
> ist?

Ich denke, die Laufzeit beträgt 12 Jahre. Wie hoch ist das Endkapital [mm] (K_n)? [/mm]


[mm] i_{eff} [/mm] = [mm] 1.200*\bruch{q^{12}-1}{q-1} [/mm] = [mm] K_n [/mm]


Viele Grüße
Josef

Bezug
                                                                                                                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Fr 25.02.2011
Autor: Blueblackberry

Ja es geht über 12 Jahre und jedes Jahr werden 1200€ investiert. Endkapital ist 20.433,23 €.


Bezug
                                                                                                                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Fr 25.02.2011
Autor: Josef

Hallo,

> Ja es geht über 12 Jahre und jedes Jahr werden 1200€
> investiert. Endkapital ist 20.433,23 €.
>  


Die durchschnittliche jährliche Effektivverzinsung beträgt bei nachschüssiger Zahlung von jährlich 1.200 für 12 Jahre und Endkapital von 20.433,23


[mm] i_{eff} [/mm] = [mm] 1.200*\bruch{q^{12}-1}{q-1} [/mm] = 20.433,23


q  = 1,06159313...

[mm] i_{eff} [/mm] = 6,159... %




Viele Grüße
Josef

Bezug
                                                                                                                                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Fr 25.02.2011
Autor: Blueblackberry

Ok.

Und bei einer vorschüssigen Zahlung der 1200?

Bezug
                                                                                                                                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 05:40 Sa 26.02.2011
Autor: Josef

Hallo Blueblackberry,

> Ok.
>  
> Und bei einer vorschüssigen Zahlung der 1200?


q = 1,052765...


[mm] i_{eff} [/mm] = 5,2765 %



Viele Grüße
Josef

Bezug
                                                                                                                                                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:46 Sa 26.02.2011
Autor: Blueblackberry

Wie lautet die Formel dazu?

Bezug
                                                                                                                                                                        
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:13 Sa 26.02.2011
Autor: Blueblackberry

Ach einfach noch mal q. Ist das zufällig nun der vorschüssige Rentenbarwertfaktor? oder wie nennt sich diese Formel?

Bezug
                                                                                                                                                                                
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Sa 26.02.2011
Autor: Josef

Hallo,

> Ach einfach noch mal q. Ist das zufällig nun der
> vorschüssige Rentenbarwertfaktor?

Vorschüssige Rentenendwertformel.


Viele Grüße
Josef

Bezug
                                                                                                                                                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Sa 26.02.2011
Autor: Josef

Hallo Blueblackberry,

> Wie lautet die Formel dazu?

Entschuldigung!


Die Formel lautet für vorschüssige, jährliche Ratenzahlungen:

[mm] 1.200*q*\bruch{q^{12}-1}{q-1} [/mm] = 20.433,23


q ermitteln.  Ergibt jährlichen Effektivzins [mm] i_{eff}. [/mm]


Viele Grüße
Josef


Bezug
                                                                                                
Bezug
Jährliche Rendite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Sa 26.02.2011
Autor: Blueblackberry

hat diese Formel auch einen Namen?

Bezug
                                                                                                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Sa 26.02.2011
Autor: Josef

Hallo,

> hat diese Formel auch einen Namen?


Frage nach dem Zinsfuß.


einfache Zinssatzberechnung; auch Effektivzinsberechnung bei gegebenen Anfangs- und Endkapital sowie Laufzeit.


Viele Grüße
Josef

Bezug
                        
Bezug
Jährliche Rendite: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Do 24.02.2011
Autor: Josef

Hallo,

> Wenn ich beispielsweise 2 Jahre lang, jeweils pro Jahr
> 1200€ in den dax investieren möchte.
>  
> Zum Investitionszeitpunkt am 01.01.1999 steht der Dax bei
> 5180,29 Punkten, Ende des Jahres bei 6835,6 Punkten. Anfang
> 2000 dann wieder bei 6835,6 Punkten und Ende des Jahres bei
> 6795,14 Punkten. Dann ist die jährliche Rendite (gewinn:
> eingesetztes Kapital -1) im ersten Jahr 2,63%, im zweiten
> Jahr 0,32%. Kann ich dann diese beiden Renditen addieren
> und einfach durch 2 teilen, um so meinen Wert zu bekommen,
> den ich mit der Ablaufrendite der Lebensversicherung
> vergleichen kann?


ich unterstelle, dass deine Prozentsätze richtig sind, dann gilt:

[mm] \wurzel[2]{1,0263*1,0032} [/mm] = 1,02958 = 2,958 %

durchschnittliche eff.Verzinsung = 2,958 %


Viele Grüße
Josef

Bezug
                                
Bezug
Jährliche Rendite: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Do 24.02.2011
Autor: Blueblackberry

Ok vielen Dank!!! Dann hoffe ich, dass die jährlichen Renditen, die ich ausgerechnet habe, so stimmen dann kann ich die durchschnittliche eff. Verzinsung so berechnen.

Ich bedanke mich vielmals!

Kannst du vielleicht ein gutes Leerbuch zu diesem Thema empfehlen? Du scheinst dich sehr gut auszukennen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]