matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisJacobideterminante bei Substitutionsformel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Jacobideterminante bei Substitutionsformel
Jacobideterminante bei Substitutionsformel < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobideterminante bei Substitutionsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:54 Fr 27.08.2004
Autor: Nadine83

Hallo,

ich habe diese Frage in keinem weiteren Forum gestellt ;-).
In der Maßtheorie gibt es ja die schöne Formel [mm] \mu (T(x)) = |\det T | \mu\ [/mm] (bzw.  [mm] d\mu (T(x)) = |\det T |d \mu\ [/mm] - kann man das so schreiben?)
Eine ähnliche Formel ist mir nun bei der Transformation von einem Koordinatensystem ins andere begegnet. Wenn [mm] T [/mm] beispielsweise die Abbildung von den kartesischen Koordinaten in sphärische Koordinaten (oder umgekehrt) ist, dann lautet die Substitutionsregel (bspw.) [mm] dxdy = |det DT| dr d\phi[/mm]
Die beiden Formeln müssen ja wohl etwas miteinander zu tun haben und sehen auch fast gleich aus.
Aber wieso hab ich bei der 'konkreten' Anwendung diese Ableitung D, die Jacobideterminante drinnen, wo kommt die her?
Danke!

        
Bezug
Jacobideterminante bei Substitutionsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 01:35 Fr 27.08.2004
Autor: Stefan

Liebe Nadine!

[willkommenmr]

> In der Maßtheorie gibt es ja die schöne Formel [mm][mm]\mu[/mm] (T(x)) = [mm]|\det[/mm] T >| [mm]\mu\ [/mm][/mm] (bzw.  [mm][mm]d\mu[/mm] (T(x)) = [mm]|\det[/mm] T |d [mm]\mu\ [/mm][/mm]
> - kann man das so schreiben?)[/mm][/mm]

Nein. Es gilt im Allgemeinen nur, wenn $f'$ eine messbare, bezüglich [mm] $T(\mu)$ [/mm] integrierbare Funktion ist:

[mm] $\int f'\, dT(\mu) [/mm] = [mm] \int [/mm] f' [mm] \circ [/mm] T [mm] d\mu$. [/mm]

Ist jetzt speziell [mm] $\mu$ [/mm] das Lebesgue-Maß und $T$ ein [mm] $C_1$-Diffeomeorphismus, [/mm] so gilt:

[mm] $\int [/mm] f' [mm] d\mu [/mm] = [mm] \int [/mm] (f' [mm] \circ [/mm] T) [mm] \cdot \vert \det [/mm] DT [mm] \vert\, d\mu$. [/mm]

Dies liegt einfach an dem Transformationsverhalten des Lebesgue-Maßes unter [mm] $C_1$-Diffeomorphismen: [/mm]

[mm] $T(\mu) [/mm] = [mm] \frac{1}{\vert \det DT\vert} \mu$. [/mm] (Das ist sehr aufwändig zu beweisen, steht aber in nahezu allen Analysis-II-Lehrbüchern.)

Ist $T$ speziell linear, so folgt:

[mm] $\int [/mm] f' [mm] d\mu [/mm] = [mm] \int [/mm] ( f' [mm] \circ [/mm] T) [mm] \cdot \vert \det [/mm] T [mm] \vert\, d\mu$. [/mm]

(Ich nehme mal an, das meintest du oben.)

Klar, denn das Differential einer linearen Abbildung ist die lineare Abbildung selbst (denk beim Differential eines Diffeomorphismus naiv immer an die bestapproximierende lineare Abbildung).

Lieben Grüße
Stefan





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]